Contractivity of Transport Distances for the Kinetic Kuramoto Equation
被引:42
作者:
Carrillo, Jose A.
论文数: 0引用数: 0
h-index: 0
机构:
Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, EnglandUniv London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
Carrillo, Jose A.
[1
]
Choi, Young-Pil
论文数: 0引用数: 0
h-index: 0
机构:
Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, EnglandUniv London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
Choi, Young-Pil
[1
]
Ha, Seung-Yeal
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
Seoul Natl Univ, Res Inst Math, Seoul 151747, South KoreaUniv London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
Ha, Seung-Yeal
[2
,3
]
Kang, Moon-Jin
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Austin, Dept Math, Austin, TX 78712 USAUniv London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
Kang, Moon-Jin
[4
]
Kim, Yongduck
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Dept Math Sci, Seoul 151747, South KoreaUniv London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
Kim, Yongduck
[2
]
机构:
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[3] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[4] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
We present synchronization and contractivity estimates for the kinetic Kuramoto model obtained from the Kuramoto phase model in the mean-field limit. For identical Kuramoto oscillators, we present an admissible class of initial data leading to time-asymptotic complete synchronization, that is, all measure valued solutions converge to the traveling Dirac measure concentrated on the initial averaged phase. In the case of non-identical oscillators, we show that the velocity field converges to the average natural frequency proving that the oscillators move asymptotically with the same frequency under suitable assumptions on the initial configuration. If two initial Radon measures have the same natural frequency density function and strength of coupling, we show that the Wasserstein -distance between corresponding measure valued solutions is exponentially decreasing in time. This contraction principle is more general than previous -contraction properties of the Kuramoto phase model.