Contractivity of Transport Distances for the Kinetic Kuramoto Equation

被引:42
作者
Carrillo, Jose A. [1 ]
Choi, Young-Pil [1 ]
Ha, Seung-Yeal [2 ,3 ]
Kang, Moon-Jin [4 ]
Kim, Yongduck [2 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Seoul Natl Univ, Dept Math Sci, Seoul 151747, South Korea
[3] Seoul Natl Univ, Res Inst Math, Seoul 151747, South Korea
[4] Univ Texas Austin, Dept Math, Austin, TX 78712 USA
基金
新加坡国家研究基金会; 英国工程与自然科学研究理事会;
关键词
Kuramoto model; Complete synchronization; Wasserstein distance; Contraction; COUPLED OSCILLATORS; EXPONENTIAL SYNCHRONIZATION; FLOCKING DYNAMICS; PHASE MODEL; STABILITY; POPULATIONS; SYSTEMS; LIMIT;
D O I
10.1007/s10955-014-1005-z
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present synchronization and contractivity estimates for the kinetic Kuramoto model obtained from the Kuramoto phase model in the mean-field limit. For identical Kuramoto oscillators, we present an admissible class of initial data leading to time-asymptotic complete synchronization, that is, all measure valued solutions converge to the traveling Dirac measure concentrated on the initial averaged phase. In the case of non-identical oscillators, we show that the velocity field converges to the average natural frequency proving that the oscillators move asymptotically with the same frequency under suitable assumptions on the initial configuration. If two initial Radon measures have the same natural frequency density function and strength of coupling, we show that the Wasserstein -distance between corresponding measure valued solutions is exponentially decreasing in time. This contraction principle is more general than previous -contraction properties of the Kuramoto phase model.
引用
收藏
页码:395 / 415
页数:21
相关论文
共 31 条
  • [1] The Kuramoto model:: A simple paradigm for synchronization phenomena
    Acebrón, JA
    Bonilla, LL
    Vicente, CJP
    Ritort, F
    Spigler, R
    [J]. REVIEWS OF MODERN PHYSICS, 2005, 77 (01) : 137 - 185
  • [2] [Anonymous], ESAIM MATH MODEL NUM, DOI DOI 10.1051/M2AN:1999118
  • [3] A shocking display of synchrony
    Balmforth, NJ
    Sassi, R
    [J]. PHYSICA D, 2000, 143 (1-4): : 21 - 55
  • [4] Contractive metrics for a Boltzmann equation for granular gases: Diffusive equilibria
    Bisi, M
    Carrillo, JA
    Toscani, G
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2005, 118 (1-2) : 301 - 331
  • [5] BIOLOGY OF SYNCHRONOUS FLASHING OF FIREFLIES
    BUCK, J
    BUCK, E
    [J]. NATURE, 1966, 211 (5049) : 562 - &
  • [6] A WELL-POSEDNESS THEORY IN MEASURES FOR SOME KINETIC MODELS OF COLLECTIVE MOTION
    Canizo, J. A.
    Carrillo, J. A.
    Rosado, J.
    [J]. MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2011, 21 (03) : 515 - 539
  • [7] ASYMPTOTIC FLOCKING DYNAMICS FOR THE KINETIC CUCKER-SMALE MODEL
    Carrillo, J. A.
    Fornasier, M.
    Rosado, J.
    Toscani, G.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) : 218 - 236
  • [8] Carrillo J.A., 2004, WASSERSTEIN METRIC L
  • [9] Chiba H., 2010, CONTINUOUS LIMIT MOM
  • [10] Choi YP, 2013, COMMUN MATH SCI, V11, P385