Optimization and improvement of a front graded bandgap CuInGaSe2 solar cell

被引:18
作者
Aissat, A. [1 ,2 ]
Arbouz, H. [1 ]
Vilcot, J. P. [2 ]
机构
[1] Univ Blida1, Lab LATSI, Fac Technol, Blida 09000, Algeria
[2] Univ Lille 1Sci & Technol, IEMN, UMR 8520, Ave Poincare,CS60069, F-59652 Villeneuve Dascq, France
关键词
Semiconductor; Gradual bandgap; CIGS; Thin film; Solar cell; TEMPERATURE-DEPENDENCE; PHOTOCURRENT DENSITY; GAP;
D O I
10.1016/j.solmat.2017.09.017
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper reports simulations of gradual bandgap CIGS absorber and its impact on the characteristics of a solar cell. The bandgap of the CIGS absorber varies linearly and drops from Eg(max) (at the junction limit) to Eg(min) (in the vicinity of the rear contact).We introduce an effective absorption coefficient based on this variation. We will demonstrate that this gradual profile contributes to an improvement up to 171 mV of the open circuit voltage V-oc of the cell that is linked to the modification of the internal electrical field distribution within the absorber. However, a joint reduction of 1.50 mA/cm(2) of short circuit current density, J(sc) is observed. Overall, the conversion efficiency increases from 19.2%, for a uniform bandgap absorber structure, to 24.9% in that case of gradual bandgap. Additionally, we investigate the impact of absorber thickness and temperature on cell characteristics.
引用
收藏
页码:381 / 385
页数:5
相关论文
共 27 条
  • [1] Abdullah, 2012, AL RAFIDA ENG, V20, P44, DOI DOI 10.33899/RENGJ.2012.50478
  • [2] Optical Simulation of Light Management in CIGS Thin-Film Solar Cells Using Finite Element Method
    Bednar, Nikola
    Severino, Noemi
    Adamovic, Nadja
    [J]. APPLIED SCIENCES-BASEL, 2015, 5 (04): : 1735 - 1744
  • [3] Carter NJ, 2013, IEEE PHOT SPEC CONF, P3062, DOI 10.1109/PVSC.2013.6745107
  • [4] Chirila A, 2011, NAT MATER, V10, P857, DOI [10.1038/nmat3122, 10.1038/NMAT3122]
  • [5] Analytical versus numerical analysis of back grading in CIGS solar cells
    Decock, Koen
    Khelifi, Samira
    Burgelman, Marc
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2011, 95 (06) : 1550 - 1554
  • [6] Back surface band gap gradings in Cu(In,Ga)Se2 solar cells
    Dullweber, T
    Lundberg, O
    Malmström, J
    Bodegård, M
    Stolt, L
    Rau, U
    Schock, HW
    Werner, JH
    [J]. THIN SOLID FILMS, 2001, 387 (1-2) : 11 - 13
  • [7] A new approach to high-efficiency solar cells by band gap grading in Cu(In,Ga)Se2 chalcopyrite semiconductors
    Dullweber, T
    Hanna, G
    Rau, U
    Schock, HW
    [J]. SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2001, 67 (1-4) : 145 - 150
  • [8] Fathipour M., 2010, WORLD ACAD SCI ENG T, V45, P480
  • [9] Optimizing Ga-profiles for highly efficient Cu(In, Ga)Se2 thin film solar cells in simple and complex defect models
    Frisk, C.
    Platzer-Bjorkman, C.
    Olsson, J.
    Szaniawski, P.
    Watjen, J. T.
    Fjallstrom, V.
    Salome, P.
    Edoff, M.
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (48)
  • [10] Band-gap grading in Cu(In,Ga)Se2 solar cells
    Gloeckler, M
    Sites, JR
    [J]. JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2005, 66 (11) : 1891 - 1894