A Denoising Algorithm for Terahertz Time Domain Spectrum based on Lifting Wavelet Transform

被引:2
作者
Cui, Gangqiang [1 ]
Peng, Wenyu [2 ]
Liu, Yansheng [1 ,4 ]
Chang, Chao [3 ,4 ]
机构
[1] Northwest Inst Nucl Technol, Sci & Technol High Power Microwave Lab, Xian 710024, Shaanxi, Peoples R China
[2] Xi An Jiao Tong Univ, Sch Life Sci & Technol, Key Lab Biomed Informat Engn, Minist Educ, Xian 710049, Shaanxi, Peoples R China
[3] Natl Innovat Inst Def Technol, Beijing 100071, Peoples R China
[4] Xi An Jiao Tong Univ, Key Lab Phys Elect & Devices, Minist Educ, Xian 710049, Shaanxi, Peoples R China
来源
SECOND SYMPOSIUM ON NOVEL TECHNOLOGY OF X-RAY IMAGING | 2019年 / 11068卷
关键词
Denoising; Terahertz time domain spectroscopy; Lifting wavelet transform; Discrete wavelet transform;
D O I
10.1117/12.2524111
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Terahertz time domain spectroscopy has been widely used in tumor detection, chemical analysis and nondestructive testing. However, the measurement errors of terahertz time domain spectrum frequently occur because of vibration of experiment instrument platform or temperature and humidity changes. Lifting wavelet transform based on different wavelet basis functions was applied to the denoising of terahertz time domain spectrum of PTFE. The denoising results were compared with denoising results of wavelet soft threshold method. The wavelet soft threshold method got a highest signal to noise ratio (SNR) of 58.75 dB and a least root mean square error (RMSE) of 3.56*10(boolean AND)(-5), while lifting wavelet transform method achieved a highest SNR of 60.69 dB and a least RMSE of 2.85*10(boolean AND) (-5). These results imply that lifting wavelet transform performs better in terahertz spectrum denoising than wavelet soft threshold.
引用
收藏
页数:5
相关论文
共 14 条
[1]   Pulsed terahertz imaging of breast cancer in freshly excised murine tumors [J].
Bowman, Tyler ;
Chavez, Tanny ;
Khan, Kamrul ;
Wu, Jingxian ;
Chakraborty, Avishek ;
Rajaram, Narasimhan ;
Bailey, Keith ;
El-Shenawee, Magda .
JOURNAL OF BIOMEDICAL OPTICS, 2018, 23 (02)
[2]   Terahertz molecular resonance of cancer DNA [J].
Cheon, Hwayeong ;
Yang, Hee-jin ;
Lee, Sang-Hun ;
Kim, Young A. ;
Son, Joo-Hiuk .
SCIENTIFIC REPORTS, 2016, 6
[3]  
Goryachuk A, 2017, IEEE INT SYM MED MEA, P134, DOI 10.1109/MeMeA.2017.7985863
[4]  
Han X H, 2016, SPECTROSCOPY SPECTRA
[5]   Terahertz pulse generation from metal nanoparticle ink [J].
Kato, Kosaku ;
Takano, Keisuke ;
Tadokoro, Yuzuru ;
Thanh Nhat Khoa Phan ;
Nakajima, Makoto .
INFRARED, MILLIMETER-WAVE, AND TERAHERTZ TECHNOLOGIES IV, 2016, 10030
[6]   A Study of Raman Spectra Denoising Based on Empirical Mode Decomposition [J].
Li Qing ;
Zhang Guo-ping ;
Liu Yang .
SPECTROSCOPY AND SPECTRAL ANALYSIS, 2009, 29 (01) :142-145
[7]   An EMD-SG Algorithm for Spectral Noise Reduction of FBG-FP Static Strain Sensor [J].
Liu, Peide ;
Huang, Wenzhu ;
Zhang, Wentao ;
Li, Fang .
IEEE PHOTONICS TECHNOLOGY LETTERS, 2017, 29 (10) :814-817
[8]  
Ma Z, 2017, APPL LASER
[9]  
Ning T, 2016, ASMC PROC, P403, DOI 10.1109/ASMC.2016.7491085
[10]   Characterization of prospective explosive materials using terahertz time-domain spectroscopy [J].
Palka, Norbert ;
Szala, Mateusz ;
Czerwinska, Elzbieta .
APPLIED OPTICS, 2016, 55 (17) :4575-4583