High-speed, high-purity separation of gold nanoparticle-DNA origami constructs using centrifugation

被引:30
作者
Ko, Seung Hyeon [1 ,2 ]
Vargas-Lara, Fernando [3 ]
Patrone, Paul N. [1 ,4 ,5 ]
Stavis, Samuel M. [1 ]
Starr, Francis W. [3 ]
Douglas, Jack F. [3 ]
Liddle, J. Alexander [1 ]
机构
[1] NIST, Ctr Nanoscale Sci & Technol, Gaithersburg, MD 20899 USA
[2] Univ Maryland, Maryland Nanoctr, College Pk, MD 20742 USA
[3] NIST, Mat Sci & Engn Div, Gaithersburg, MD 20899 USA
[4] Univ Maryland, Inst Res Elect & Appl Phys, Dept Phys, College Pk, MD 20742 USA
[5] Univ Maryland, Condensed Matter Theory Ctr, College Pk, MD 20742 USA
关键词
SINGLE-STRANDED-DNA; CARBON NANOTUBES; TRANSPORT-PROPERTIES; NANOSCALE SHAPES; NANOSTRUCTURES; ADSORPTION; LENGTH; DYNAMICS; FRICTION; SCIENCE;
D O I
10.1039/c4sm01071j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
DNA origami is a powerful platform for assembling gold nanoparticle constructs, an important class of nanostructure with numerous applications. Such constructs are assembled by the association of complementary DNA oligomers. These association reactions have yields of <100%, requiring the development of methods to purify the desired product. We study the performance of centrifugation as a separation approach by combining optical and hydrodynamic measurements and computations. We demonstrate that bench-top microcentrifugation is a simple and efficient method of separating the reaction products, readily achieving purities of >90%. The gold nanoparticles play a number of critical roles in our system, functioning not only as integral components of the purified products, but also as hydrodynamic separators and optical indicators of the reaction products during the purification process. We find that separation resolution is ultimately limited by the polydispersity in the mass of the gold nanoparticles and by structural distortions of DNA origami induced by the gold nanoparticles. Our study establishes a methodology for determining the design rules for nanomanufacturing DNA origami-nanoparticle constructs.
引用
收藏
页码:7370 / 7378
页数:9
相关论文
共 60 条
[1]   Fluorescence Enhancement at Docking Sites of DNA-Directed Self-Assembled Nanoantennas [J].
Acuna, G. P. ;
Moeller, F. M. ;
Holzmeister, P. ;
Beater, S. ;
Lalkens, B. ;
Tinnefeld, P. .
SCIENCE, 2012, 338 (6106) :506-510
[2]   Separation of Nanoparticles in Aqueous Multiphase Systems through Centrifugation [J].
Akbulut, Ozge ;
Mace, Charles R. ;
Martinez, Ramses V. ;
Kumar, Ashok A. ;
Nie, Zhihong ;
Patton, Matthew R. ;
Whitesides, George M. .
NANO LETTERS, 2012, 12 (08) :4060-4064
[3]   Sorting carbon nanotubes by electronic structure using density differentiation [J].
Arnold, Michael S. ;
Green, Alexander A. ;
Hulvat, James F. ;
Stupp, Samuel I. ;
Hersam, Mark C. .
NATURE NANOTECHNOLOGY, 2006, 1 (01) :60-65
[4]   Rapid Separation and Purification of Nanoparticles in Organic Density Gradients [J].
Bai, Lu ;
Ma, Xiuju ;
Liu, Junfeng ;
Sun, Xiaoming ;
Zhao, Dongyuan ;
Evans, David G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (07) :2333-2337
[5]   Recovery of intact DNA nanostructures after agarose gel-based separation [J].
Bellot, Gaetan ;
McClintock, Mark A. ;
Lin, Chenxiang ;
Shih, William M. .
NATURE METHODS, 2011, 8 (03) :192-194
[6]   Nanoscale structure and dynamics of DNA [J].
Berg, Mark A. ;
Coleman, Robert S. ;
Murphy, Catherine J. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2008, 10 (09) :1229-1242
[7]   Technical considerations for the use of 15N-DNA stable-isotope probing for functional microbial activity in soils [J].
Cadisch, G ;
Espana, M ;
Causey, R ;
Richter, M ;
Shaw, E ;
Morgan, JAW ;
Rahn, C ;
Bending, GD .
RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2005, 19 (11) :1424-1428
[8]   The changing economics of DNA synthesis [J].
Carlson, Robert .
NATURE BIOTECHNOLOGY, 2009, 27 (12) :1091-1094
[9]   A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles [J].
Demers, LM ;
Mirkin, CA ;
Mucic, RC ;
Reynolds, RA ;
Letsinger, RL ;
Elghanian, R ;
Viswanadham, G .
ANALYTICAL CHEMISTRY, 2000, 72 (22) :5535-5541
[10]   Gold Nanoparticle Self-Similar Chain Structure Organized by DNA Origami [J].
Ding, Baoquan ;
Deng, Zhengtao ;
Yan, Hao ;
Cabrini, Stefano ;
Zuckermann, Ronald N. ;
Bokor, Jeffrey .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2010, 132 (10) :3248-+