Discrimination of alcohol dependence based on the convolutional neural network

被引:4
作者
Chen, Fangfang [1 ]
Xiao, Meng [2 ]
Chen, Cheng [1 ]
Chen, Chen [1 ]
Yan, Ziwei [1 ]
Han, Huijie [3 ]
Zhang, Shuailei [1 ]
Yue, Feilong [4 ]
Gao, Rui [1 ]
Lv, Xiaoyi [1 ,4 ,5 ]
机构
[1] Xinjiang Univ, Coll Informat Sci & Engn, Urumqi, Xinjiang, Peoples R China
[2] Fourth Peoples Hosp Urumqi, Urumqi, Xinjiang, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Pharm, Shanghai, Peoples R China
[4] Xinjiang Univ, Coll Software, Urumqi, Xinjiang, Peoples R China
[5] Xinjiang Univ, Key Lab Signal Detect & Proc, Urumqi, Xinjiang, Peoples R China
关键词
SINGLE-NUCLEOTIDE POLYMORPHISMS; SEROTONIN TRANSPORTER; POSTTRAUMATIC-STRESS; CLINICAL-APPLICATION; 5-HT3; RECEPTOR; UNITED-STATES; ASSOCIATION; GENES; DISORDER; GENETICS;
D O I
10.1371/journal.pone.0241268
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, a total of 20 sites of single nucleotide polymorphisms (SNPs) on the serotonin 3 receptor A gene (HTR3A) and B gene (HTR3B) are used for feature fusion with age, education and marital status information, and the grid search-support vector machine (GS-SVM), the convolutional neural network (CNN) and the convolutional neural network combined with long and short-term memory (CNN-LSTM) are used to classify and discriminate between alcohol-dependent patients (AD) and the non-alcohol-dependent control group. The results show that 19 SNPs combined with academic qualifications have the best discrimination effect. In the GS-SVM, the area under the receiver operating characteristic (ROC) curve (AUC) is 0.87, the AUC of CNN-LSTM is 0.88, and the performance of the CNN model is the best, with an AUC of 0.92. This study shows that the CNN model can more accurately discriminate AD than the SVM to treat patients in time.
引用
收藏
页数:19
相关论文
共 67 条
[1]  
Abd El Hamid MM, 2016, CAIRO INT BIOM ENG, P5, DOI 10.1109/CIBEC.2016.7836087
[2]   Accurate classification of brain gliomas by discriminate dictionary learning based on projective dictionary pair learning of proton magnetic resonance spectra [J].
Adebileje, Sikiru Afolabi ;
Ghasemi, Keyvan ;
Aiyelabegan, Hammed Tanimowo ;
Rad, Hamidreza Saligheh .
MAGNETIC RESONANCE IN CHEMISTRY, 2017, 55 (04) :318-322
[3]   User's guide to correlation coefficients [J].
Akoglu, Haldun .
TURKISH JOURNAL OF EMERGENCY MEDICINE, 2018, 18 (03) :91-93
[4]  
Alzubi R, 2018, 2018 24 INT C AUT CO
[5]   A Hybrid Feature Selection Method for Complex Diseases SNPs [J].
Alzubi, Raid ;
Ramzan, Naeem ;
Alzoubi, Hadeel ;
Amira, Abbes .
IEEE ACCESS, 2018, 6 :1292-1301
[6]   Polygenic Scores for Major Depressive Disorder and Risk of Alcohol Dependence [J].
Andersen, Allan M. ;
Pietrzak, Robert H. ;
Kranzler, Henry R. ;
Ma, Li ;
Zhou, Hang ;
Liu, Xiaoming ;
Kramer, John ;
Kuperman, Samuel ;
Edenberg, Howard J. ;
Nurnberger, John I., Jr. ;
Rice, John P. ;
Tischfield, Jay A. ;
Goate, Alison ;
Foroud, Tatiana M. ;
Meyers, Jacquelyn L. ;
Porjesz, Bernice ;
Dick, Danielle M. ;
Hesselbrock, Victor ;
Boerwinkle, Eric ;
Southwick, Steven M. ;
Krystal, John H. ;
Weissman, Myrna M. ;
Levinson, Douglas F. ;
Potash, James B. ;
Gelernter, Joel ;
Han, Shizhong .
JAMA PSYCHIATRY, 2017, 74 (11) :1153-1160
[7]  
[Anonymous], 2017, CANC DISCOVERY, V7, pOF12
[8]  
[Anonymous], 2019, CIRCULATION, V2019
[9]  
Bae S. H.., 2016, Technical report
[10]   Relationship between family history of alcohol addiction, parents' education level, and smartphone problem use scale scores [J].
Beison, Ashley ;
Rademacher, David J. .
JOURNAL OF BEHAVIORAL ADDICTIONS, 2017, 6 (01) :84-91