Drug Resistance Mutations Alter Dynamics of Inhibitor-Bound HIV-1 Protease

被引:28
作者
Cai, Yufeng [1 ]
Myint, Wazo [2 ]
Paulsen, Janet L. [1 ]
Schiffer, Celia A. [1 ]
Ishima, Rieko [2 ]
Yilmaz, Nese Kurt [1 ]
机构
[1] Univ Massachusetts, Sch Med, Dept Biochem & Mol Pharmacol, Worcester, MA 01605 USA
[2] Univ Pittsburgh, Dept Biol Struct, Sch Med, Pittsburgh, PA 15260 USA
基金
美国国家卫生研究院;
关键词
VIRUS TYPE-1 PROTEASE; MAGNETIC-RESONANCE RELAXATION; MODEL-FREE APPROACH; MOLECULAR-DYNAMICS; SUBSTRATE ENVELOPE; WILD-TYPE; CONFORMATIONAL ENTROPY; LIGAND BINDING; NMR; SIMULATIONS;
D O I
10.1021/ct4010454
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Under the selective pressure of therapy, HIV-1 protease mutants resistant to inhibitors evolve to confer drug resistance. Such mutations can impact both the dynamics and structures of the bound and unbound forms of the enzyme. Flap+is a multidrug-resistant variant of HIV-1 protease with a combination of primary and secondary resistance mutations (L10I, G48V, I54V, V82A) and a strikingly altered thermodynamic profile for darunavir (DRV) binding relative to the wild-type protease. We elucidated the impact of these mutations on protein dynamics in the DRV-bound state using molecular dynamics simulations and NMR relaxation experiments. Both methods concur in that the conformational ensemble and dynamics of protease are impacted by the drug resistance mutations in Flap+ variant. Surprisingly this change in ensemble dynamics is different from that observed in the unliganded form of the same variant (Cai, Y. et al. J. Chem. Theory Comput. 2012, 8, 3452-3462). Our comparative analysis of both inhibitor-free and bound states presents a comprehensive picture of the altered dynamics in drug-resistant mutant HIV-1 protease and underlies the importance of incorporating dynamic analysis of the whole system, including the unliganded state, into revealing drug resistance mechanisms.
引用
收藏
页码:3438 / 3448
页数:11
相关论文
共 43 条
[1]   Contribution of Explicit Solvent Effects to the Binding Affinity of Small-Molecule Inhibitors in Blood Coagulation Factor Serine Proteases [J].
Abel, Robert ;
Salam, Noeris K. ;
Shelley, John ;
Farid, Ramy ;
Friesner, Richard A. ;
Sherman, Woody .
CHEMMEDCHEM, 2011, 6 (06) :1049-1066
[2]   HIV-1 protease inhibitors from inverse design in the substrate envelope exhibit subnanomolar binding to drug-resistant variants [J].
Altman, Michael D. ;
Ali, Akbar ;
Reddy, G. S. Kiran Kumar ;
Nalam, Madhavi N. L. ;
Anjum, Saima Ghafoor ;
Cao, Hong ;
Chellappan, Sripriya ;
Kairys, Visvalclas ;
Fernandes, Miguel X. ;
Gilson, Michael K. ;
Schiffer, Celia A. ;
Rana, Tariq M. ;
Tidor, Bruce .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2008, 130 (19) :6099-6113
[3]  
Bandaranayake R. M., 2012, EXTREME ENTROP UNPUB
[4]   Water Networks Contribute to Enthalpy/Entropy Compensation in Protein-Ligand Binding [J].
Breiten, Benjamin ;
Lockett, Matthew R. ;
Sherman, Woody ;
Fujita, Shuji ;
Al-Sayah, Mohammad ;
Lange, Heiko ;
Bowers, Carleen M. ;
Heroux, Annie ;
Krilov, Goran ;
Whitesides, George M. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (41) :15579-15584
[5]   Differential Flap Dynamics in Wild-Type and a Drug Resistant Variant of HIV-1 Protease Revealed by Molecular Dynamics and NMR Relaxation [J].
Cai, Yufeng ;
Yilmaz, Nese Kurt ;
Myint, Wazo ;
Ishima, Rieko ;
Schiffer, Celia A. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2012, 8 (10) :3452-3462
[6]   Decomposing the Energetic Impact of Drug Resistant Mutations in HIV-1 Protease on Binding DRV [J].
Cai, Yufeng ;
Schiffer, Celia A. .
JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2010, 6 (04) :1358-1368
[7]   The Amber biomolecular simulation programs [J].
Case, DA ;
Cheatham, TE ;
Darden, T ;
Gohlke, H ;
Luo, R ;
Merz, KM ;
Onufriev, A ;
Simmerling, C ;
Wang, B ;
Woods, RJ .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1668-1688
[8]   A 500-PS MOLECULAR-DYNAMICS SIMULATION STUDY OF INTERLEUKIN-1-BETA IN WATER - CORRELATION WITH NUCLEAR-MAGNETIC-RESONANCE SPECTROSCOPY AND CRYSTALLOGRAPHY [J].
CHANDRASEKHAR, I ;
CLORE, GM ;
SZABO, A ;
GRONENBORN, AM ;
BROOKS, BR .
JOURNAL OF MOLECULAR BIOLOGY, 1992, 226 (01) :239-250
[9]   Comparing the accumulation of active- and nonactive-site mutations in the HIV-1 protease [J].
Clemente, JC ;
Moose, RE ;
Hemrajani, R ;
Whitford, LRS ;
Govindasamy, L ;
Reutzel, R ;
McKenna, R ;
Agbandje-McKenna, M ;
Goodenow, MM ;
Dunn, BM .
BIOCHEMISTRY, 2004, 43 (38) :12141-12151
[10]   Secondary mutations M36I and A71V in the human immunodeficiency virus type 1 protease can provide an advantage for the emergence of the primary mutation D30N [J].
Clemente, JC ;
Hemrajani, R ;
Blum, LE ;
Goodenow, MA ;
Dunn, BA .
BIOCHEMISTRY, 2003, 42 (51) :15029-15035