An extended-2D CNN for multiclass Alzheimer's Disease diagnosis through Structural MRI

被引:10
作者
Pereira, Mariana [1 ]
Fantini, Irene [1 ]
Lotufo, Roberto [1 ]
Rittner, Leticia [1 ]
机构
[1] Univ Estadual Campinas, Fac Elect & Comp Engn, Campinas, Brazil
来源
MEDICAL IMAGING 2020: COMPUTER-AIDED DIAGNOSIS | 2020年 / 11314卷
基金
巴西圣保罗研究基金会;
关键词
Deep Learning; Convolutional Neural Network; Alzheimer's disease; Magnetic Resonance Image; CONVOLUTIONAL NEURAL-NETWORKS; COGNITIVE IMPAIRMENT; PREDICTION; CONVERSION; DEMENTIA;
D O I
10.1117/12.2550753
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Current techniques trying to predict Alzheimer's disease at an early-stage explore the structural information of T1-weighted MR Images. Among these techniques, deep convolutional neural network (CNN) is the most promising since it has been successfully used in a variety of medical imaging problems. However, the majority of works on Alzheimer's Disease tackle the binary classification problem only, i.e., to distinguish Normal Controls from Alzheimer's Disease patients. Only a few works deal with the multiclass problem, namely, patient classification into one of the three groups: Normal Control (NC), Alzheimer's Disease (AD) or Mild Cognitive Impairment (MCI). In this paper, our primary goal is to tackle the 3-class AD classification problem using T1-weighted MRI and a 2D CNN approach. We used the first two layers of ResNet34 as feature extractor and then trained a classifier using 64 x 64 sized patches from coronal 2D MRI slices. Our extended-2D CNN proposal explores the MRI volumetric information, by using non-consecutive 2D slices as input channels of the CNN, while maintaining the low computational costs associated with a 2D approach. The proposed model, trained and tested on images from ADNI dataset, achieved an accuracy of 68.6% for the multiclass problem, presenting the best performance when compared to state-of-the-art AD classification methods, even the 3D-CNN based ones.
引用
收藏
页数:7
相关论文
共 16 条
  • [1] [Anonymous], 2014, P MICCAI WORKSH CHAL
  • [2] Alzheimer's disease diagnostics by a 3D deeply supervised adaptable convolutional network
    Asl, Ehsan Hosseini
    Ghazal, Mohammed
    Mahmoud, Ali
    Aslantas, Ali
    Shalaby, Ahmed
    Casanova, Manual
    Barnes, Gregory
    Gimel'farb, Georgy
    Keynton, Robert
    El Baz, Ayman
    [J]. FRONTIERS IN BIOSCIENCE-LANDMARK, 2018, 23 : 584 - 596
  • [3] Boski M, 2017, 2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS)
  • [4] Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge
    Bron, Esther E.
    Smits, Marion
    van der Flier, Wiesje M.
    Vrenken, Hugo
    Barkhof, Frederik
    Scheltens, Philip
    Papma, Janne M.
    Steketee, Rebecca M. E.
    Orellana, Carolina Mendez
    Meijboom, Rozanna
    Pinto, Madalena
    Meireles, Joana R.
    Garrett, Carolina
    Bastos-Leite, Antonio J.
    Abdulkadir, Ahmed
    Ronneberger, Olaf
    Amoroso, Nicola
    Bellotti, Roberto
    Cardenas-Pena, David
    Alvarez-Meza, Andres M.
    Dolph, Chester V.
    Iftekharuddin, Khan M.
    Eskildsen, Simon F.
    Coupe, Pierrick
    Fonov, Vladimir S.
    Franke, Katja
    Gaser, Christian
    Ledig, Christian
    Guerrero, Ricardo
    Tong, Tong
    Gray, Katherine R.
    Moradi, Elaheh
    Tohka, Jussi
    Routier, Alexandre
    Durrleman, Stanley
    Sarica, Alessia
    Di Fatta, Giuseppe
    Sensi, Francesco
    Chincarini, Andrea
    Smith, Garry M.
    Stoyanov, Zhivko V.
    Sorensen, Lauge
    Nielsen, Mads
    Tangaro, Sabina
    Inglese, Paolo
    Wachinger, Christian
    Reuter, Martin
    van Swieten, John C.
    Niessen, Wiro J.
    Klein, Stefan
    [J]. NEUROIMAGE, 2015, 111 : 562 - 579
  • [5] Esmaeilzadeh S., 2018, INT WORKSH MACH LEAR, P337
  • [6] Vascular Contributions to Cognitive Impairment and Dementia A Statement for Healthcare Professionals From the American Heart Association/American Stroke Association
    Gorelick, Philip B.
    Scuteri, Angelo
    Black, Sandra E.
    DeCarli, Charles
    Greenberg, Steven M.
    Iadecola, Costantino
    Launer, Lenore J.
    Laurent, Stephane
    Lopez, Oscar L.
    Nyenhuis, David
    Petersen, Ronald C.
    Schneider, Julie A.
    Tzourio, Christophe
    Arnett, Donna K.
    Bennett, David A.
    Chui, Helena C.
    Higashida, Randall T.
    Lindquist, Ruth
    Nilsson, Peter M.
    Roman, Gustavo C.
    Sellke, Frank W.
    Seshadri, Sudha
    [J]. STROKE, 2011, 42 (09) : 2672 - 2713
  • [7] Han B, 2018, ADV NEUR IN, V31
  • [8] Hon M., 2017, ARXIV171111117
  • [9] A global optimisation method for robust affine registration of brain images
    Jenkinson, M
    Smith, S
    [J]. MEDICAL IMAGE ANALYSIS, 2001, 5 (02) : 143 - 156
  • [10] Korolev S, 2017, I S BIOMED IMAGING, P835, DOI 10.1109/ISBI.2017.7950647