6 Deep Learning in Drug Discovery

被引:451
作者
Gawehn, Erik [1 ]
Hiss, Jan A. [1 ]
Schneider, Gisbert [1 ]
机构
[1] ETH, Swiss Fed Inst Technol, Dept Chem & Appl Biosci, Vladimir Prelog Weg 4, CH-8093 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
bioinformatics; cheminformatics; drug design; machine-learning; neural network; virtual screening; ARTIFICIAL NEURAL-NETWORKS; SUPPORT VECTOR MACHINE; APPLICABILITY DOMAIN; SECONDARY STRUCTURE; PROTEIN-STRUCTURE; BIG DATA; DESIGN; TOOLS; REPRESENTATION; ARCHITECTURES;
D O I
10.1002/minf.201501008
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Artificial neural networks had their first heyday in molecular informatics and drug discovery approximately two decades ago. Currently, we are witnessing renewed interest in adapting advanced neural network architectures for pharmaceutical research by borrowing from the field of deep learning. Compared with some of the other life sciences, their application in drug discovery is still limited. Here, we provide an overview of this emerging field of molecular informatics, present the basic concepts of prominent deep learning methods and offer motivation to explore these techniques for their usefulness in computer-assisted drug discovery and design. We specifically emphasize deep neural networks, restricted Boltzmann machine networks and convolutional networks.
引用
收藏
页码:3 / 14
页数:12
相关论文
共 166 条
[21]  
Burden Frank, 2008, V458, P25
[22]   Comparison of support vector machine and artificial neural network systems for drug/nondrug classification [J].
Byvatov, E ;
Fechner, U ;
Sadowski, J ;
Schneider, G .
JOURNAL OF CHEMICAL INFORMATION AND COMPUTER SCIENCES, 2003, 43 (06) :1882-1889
[23]  
Byvatov Evgeny, 2003, Appl Bioinformatics, V2, P67
[24]   Deep Neural Networks Rival the Representation of Primate IT Cortex for Core Visual Object Recognition [J].
Cadieu, Charles F. ;
Hong, Ha ;
Yamins, Daniel L. K. ;
Pinto, Nicolas ;
Ardila, Diego ;
Solomon, Ethan A. ;
Majaj, Najib J. ;
DiCarlo, James J. .
PLOS COMPUTATIONAL BIOLOGY, 2014, 10 (12)
[25]  
Carreira-Perpinan MiguelA., 2005, 10 INT WORKSHOP ARTI, P59
[26]  
Ciresan D, 2012, PROC CVPR IEEE, P3642, DOI 10.1109/CVPR.2012.6248110
[27]   Multi-column deep neural network for traffic sign classification [J].
Ciresan, Dan ;
Meier, Ueli ;
Masci, Jonathan ;
Schmidhuber, Juergen .
NEURAL NETWORKS, 2012, 32 :333-338
[28]   Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks [J].
Ciresan, Dan C. ;
Giusti, Alessandro ;
Gambardella, Luca M. ;
Schmidhuber, Juergen .
MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2013, PT II, 2013, 8150 :411-418
[29]   Big data in biomedicine [J].
Costa, Fabricio F. .
DRUG DISCOVERY TODAY, 2014, 19 (04) :433-440
[30]  
Dahl George Edward, 2015, Deep learning approaches to problems in speech recognition, computational chemistry and natural language text processing