Quantum Howe duality and invariant polynomials

被引:2
作者
Futorny, Vyacheslav [1 ]
Krizka, Libor [1 ]
Zhang, Jian [1 ]
机构
[1] Univ Sao Paulo, Inst Matemat & Estat, Caixa Postal 66281, BR-05315970 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Quantum group; Quantum Weyl algebra; Howe duality; Verma module; Quantum harmonic polynomial; Quantum invariant polynomial; ANALOG; MODULES; ALGEBRA;
D O I
10.1016/j.jalgebra.2019.04.014
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct two examples of q-deformed classical Howe dual pairs (sl(2, C), so(3, (C)) and (sl(2, C), sl(n, C)). Moreover, we obtain a noncommutative version of the first fundamental theorem of classical invariant theory. Our approach to these dualities differs from [9] and [11]. Furthermore, we solve the tensor product decomposition problem for Verma modules over U-q(sl(2, C)) provided q is not a root of unity. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:326 / 367
页数:42
相关论文
共 50 条
[41]   Higher representation theory and quantum affine Schur-Weyl duality [J].
Kang, Seok-Jin .
PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS (ICM 2014), VOL II, 2014, :179-201
[42]   Super Duality and Crystal Bases for Quantum Ortho-Symplectic Superalgebras [J].
Kwon, Jae-Hoon .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2015, 2015 (23) :12620-12677
[43]   BRAID GROUP ACTIONS, BAXTER POLYNOMIALS, AND AFFINE QUANTUM GROUPS [J].
Friesen, Noah ;
Weekes, Alex ;
Wendlandt, Curtis .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2025, 378 (02) :1329-1372
[44]   Quantum polynomials from deformed quantum algebras: Probability distributions, generating functions and difference equations [J].
Hounkonnou, Mahouton Norbert ;
Melong, Fridolin .
REVIEWS IN MATHEMATICAL PHYSICS, 2023, 35 (09)
[45]   A Quantum Analogue of the First Fundamental Theorem of Classical Invariant Theory [J].
Lehrer, G. I. ;
Zhang, Hechun ;
Zhang, R. B. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 301 (01) :131-174
[46]   Lorentz invariant and supersymmetric interpretation of noncommutative quantum field theory [J].
Kobayashi, Y ;
Sasaki, S .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2005, 20 (30) :7175-7188
[47]   A Quantum Analogue of the First Fundamental Theorem of Classical Invariant Theory [J].
G. I. Lehrer ;
Hechun Zhang ;
R. B. Zhang .
Communications in Mathematical Physics, 2011, 301 :131-174
[48]   Super duality and crystal bases for quantum ortho-symplectic superalgebras II [J].
Jae-Hoon Kwon .
Journal of Algebraic Combinatorics, 2016, 43 :553-588
[49]   Super duality and crystal bases for quantum ortho-symplectic superalgebras II [J].
Kwon, Jae-Hoon .
JOURNAL OF ALGEBRAIC COMBINATORICS, 2016, 43 (03) :553-588
[50]   q-Numbers of quantum groups, Fibonacci numbers, and orthogonal polynomials [J].
Kachurik I.I. .
Ukrainian Mathematical Journal, 1998, 50 (8) :1201-1211