Object-unital groupoid graded rings, crossed products and separability

被引:4
作者
Cala, Juan [1 ]
Lundstrom, Patrik [2 ]
Pinedo, Hector [1 ]
机构
[1] Univ Ind Santander, Escuela Matemat, Bucaramanga, Colombia
[2] Univ West, Dept Engn Sci, SE-46186 Trollhattan, Sweden
关键词
Crossed product; graded ring; groupoids; separable extension;
D O I
10.1080/00927872.2020.1846742
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the classical construction by Noether of crossed product algebras, defined by finite Galois field extensions, to cover the case of separable (but not necessarily finite or normal) field extensions. This leads us naturally to consider non-unital groupoid graded rings of a particular type that we call object unital. We determine when such rings are strongly graded, crossed products, skew groupoid rings and twisted groupoid rings. We also obtain necessary and sufficient criteria for when object unital groupoid graded rings are separable over their principal component, thereby generalizing previous results from the unital case to a non-unital situation.
引用
收藏
页码:1676 / 1696
页数:21
相关论文
共 28 条
  • [1] Anh P.N., 1987, Tsukuba J. Math., V11, P1
  • [2] [Anonymous], 1966, An Introduction to Nonassociative Algebras
  • [3] On the separability of the partial skew groupoid ring
    Bagio D.
    Pinedo H.
    [J]. São Paulo Journal of Mathematical Sciences, 2017, 11 (2) : 370 - 384
  • [4] PARTIAL GROUPOID ACTIONS: GLOBALIZATION, MORITA THEORY, AND GALOIS THEORY
    Bagio, Dirceu
    Paques, Antonio
    [J]. COMMUNICATIONS IN ALGEBRA, 2012, 40 (10) : 3658 - 3678
  • [5] Böhm G, 2013, B MATH SOC SCI MATH, V56, P281
  • [6] Bruck RH., 1971, A Survey of Binary Systems, DOI DOI 10.1007/978-3-662-43119-1
  • [7] Brzezinski T, 2005, MG TXB PUR APPL MATH, V239, P71
  • [8] Invertible unital bimodules over rings with local units, and related exact sequences of groups, II
    El Kaoutit, L.
    Gomez-Torrecillas, J.
    [J]. JOURNAL OF ALGEBRA, 2012, 370 : 266 - 296
  • [9] RINGS WHOSE LEFT MODULES ARE DIRECT SUMS OF FINITELY GENERATED MODULES
    FULLER, KR
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 54 (JAN) : 39 - 44
  • [10] Kadison L., 1999, University Lecture Series, V14