共 50 条
Solar photocatalytic fuel cell using CdS-TiO2 photoanode and air-breathing cathode for wastewater treatment and simultaneous electricity production
被引:95
作者:
Wang, Bin
[1
]
Zhang, Hao
[2
]
Lu, Xiao-Ying
[3
]
Xuan, Jin
[2
,4
]
Leung, Michael K. H.
[1
]
机构:
[1] City Univ Hong Kong, Sch Energy & Environm, Abil R&D Energy Res Ctr, Hong Kong, Peoples R China
[2] E China Univ Sci & Technol, Sch Mech & Power Engn, State Key Lab Chem Engn, Shanghai 200237, Peoples R China
[3] Technol & Higher Educ Inst Hong Kong, Fac Sci & Technol, Hong Kong, Peoples R China
[4] Heriot Watt Univ, Sch Engn & Phys Sci, Inst Mech Proc & Energy Engn, Edinburgh EH14 4AS, Midlothian, Scotland
基金:
高等学校博士学科点专项科研基金;
关键词:
Photocatalytic fuel cell;
Solar activation;
Air-breathing cathode;
Degradation of wastewater organics;
Fuel cell characteristics;
CDS QUANTUM DOTS;
TIO2;
NANORODS;
HYDROGEN;
GENERATION;
POWER;
DEGRADATION;
EFFICIENT;
BIOMASS;
ARRAYS;
ACID;
D O I:
10.1016/j.cej.2014.05.041
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
Solar photocatalytic fuel cell (PFC) is a promising technology for environmental-friendly wastewater treatment and simultaneous production of electricity. In this study, PFC was enhanced by using CdS quantum-dot-sensitized TiO2 nanorod array deposited onto FTO glass as effective photoanode. Moreover, gas diffusion electrode was employed to improve oxygen reduction reaction at the cathode. The material characterization shows that an array of 1.2-mu m TiO2 nanorods is decorated with 10-nm CdS quantum dots, which significantly improve solar light harvesting ability. The results of the PFC performance study indicate that light irradiation, acetic acid concentration, electrolyte pH and conductivity have significant influence on the short-circuit current and maximum power density. When the PFC operates at the optimum pH of 4.6, the short-circuit current and maximum power density are 1.79 mA/cm(2) and 1134 mW/cm(2), respectively. It is found that increasing the electrolyte conductivity is an effective approach to improve the PFC performance. The highest short-circuit current of 5.1 mA/cm(2) and maximum power density of 3980 mW/cm(2) are obtained with electrolyte having a conductivity of 63.1-mS/cm. In addition, the test results of various pure and practical organic substances in PFC further suggest that it is feasible to use sunlight as a driving force to clean up wastewater with simultaneous electricity production. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:174 / 182
页数:9
相关论文