On the structure of attractors and invariant measures for a class of monotone random systems

被引:66
作者
Chueshov, I
Scheutzow, M
机构
[1] Tech Univ Berlin, Fak Math & Naturwissensch 2, Sekr MA 7 5, Inst Math, D-10623 Berlin, Germany
[2] Kharkov AM Gorkii State Univ, Dept Mech & Math, UA-61077 Kharkov, Ukraine
来源
DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL | 2004年 / 19卷 / 02期
关键词
D O I
10.1080/1468936042000207792
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Under rather general conditions we show that any monotone random dynamical system on an (admissible) subset of a partially ordered Banach space V has a unique invariant measure. This measure is Dirac, i.e. it is generated by some stationary process. If the cone V+ of non-negative elements of V is normal, then this stationary process is a global random attractor with respect to convergence in probability. As examples we consider one-dimensional ordinary and retarded stochastic differential equations, a stochastic model of a biochemical control circuit, a class of parabolic stochastic partial differential equations (PDEs) with additive noise and interacting particle systems.
引用
收藏
页码:127 / 144
页数:18
相关论文
共 35 条
[1]  
[Anonymous], 1989, SIGMA SERIES APPL MA
[2]  
[Anonymous], 2002, RANDOM PROBABILITY M
[3]   Order-preserving random dynamical systems: Equilibria, attractors, applications [J].
Arnold, L ;
Chueshov, I .
DYNAMICS AND STABILITY OF SYSTEMS, 1998, 13 (03) :265-280
[4]  
Arnold L., 1998, Springer Monographs in Mathematics
[5]   CRITERIA FOR RECURRENCE AND EXISTENCE OF INVARIANT MEASURES FOR MULTIDIMENSIONAL DIFFUSIONS [J].
BHATTACHARYA, RN .
ANNALS OF PROBABILITY, 1978, 6 (04) :541-553
[6]  
Bourbaki N., 1958, ELEMENTS MATH LIVRE, VIII
[7]  
Chueshov I, 2000, RANDOM OPERATORS STO, V8, P143
[8]  
CHUESHOV I, 2003, UNPUB INVARIANCE MON
[9]  
CHUESHOV ID, 2002, LNM, V1779
[10]   ATTRACTORS FOR RANDOM DYNAMICAL-SYSTEMS [J].
CRAUEL, H ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (03) :365-393