The integral limit theorem in the first passage problem for sums of independent nonnegative lattice variables

被引:0
作者
Virchenko, Yuri P. [1 ]
Yastrubenko, M. I. [1 ]
机构
[1] Belgorod State Univ, Belgorod 308015, Russia
关键词
D O I
10.1155/AAA/2006/56367
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The integral limit theorem as to the probability distribution of the random number v(m) of summands in the sum Sigma(nu m)(k=1) xi(k) is proved. Here, xi 1, xi 2,... are some nonnegative, mutually independent, lattice random variables being equally distributed and nu(m) is defined by the condition that the sum value exceeds at the first time the given level m is an element of N when the number of terms is equal to nu(m). Copyright (c) 2006 Y. P. Virchenko and M. I. Yastrubenko.
引用
收藏
页数:12
相关论文
共 9 条
  • [1] Basharinov A.E., 1962, METODY STATISTICHESK
  • [2] Fedoryuk M.V., 1977, METOD PEREVALA
  • [3] Gnedenko BV., 1969, COURSE PROBABILITY T
  • [4] HOMENKO LP, 1991, AVTOMAT TELEMEKH, V11, P177
  • [5] MAZMANISHVILI AS, 1987, KONTINUALNOE INTEGRI
  • [6] Virchenko Y. P., 1998, FUNCTIONAL MAT, V5, P7
  • [7] Virchenko Y. P., 1999, FUNCTIONAL MAT, V6, P5
  • [8] VIRCHENKO YP, 2004, TRUD VOR ZYMN MAT SH, P56
  • [9] Wald A, 2004, SEQUENTIAL ANAL