An optimised state-of-charge balance control strategy for distributed energy storage units in islanded DC microgrid

被引:3
作者
Mi, Yang [1 ]
Ma, Yuchen [1 ]
Yu, Si [2 ]
Cai, Pengcheng [1 ]
Ji, Liang [1 ]
Fu, Yang [1 ]
Yue, Dong [3 ]
Jin, Chi [4 ]
Wang, Peng [4 ]
机构
[1] Shanghai Univ Elect Power, Sch Elect Engn, 2588 Changyang Rd, Shanghai 200090, Peoples R China
[2] State Grid Hunan Yueyang Power Supply Co, Changsha, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Nanjing, Peoples R China
[4] Energy Res Inst NTU, Singapore, Singapore
基金
中国国家自然科学基金;
关键词
ADAPTIVE DROOP CONTROL; DECENTRALIZED CONTROL; COOPERATIVE CONTROL; VOLTAGE REGULATION; REACTIVE POWER; MANAGEMENT; AC; GENERATION; OPERATION; SYSTEMS;
D O I
10.1049/gtd2.12077
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The optimised droop control method is proposed to achieve the state-of-charge (SoC) balance among parallel-connected distributed energy storage units in islanded DC microgrid, which considers the difference of line impedance, initial state-of-charge values and capacities among distributed energy storage units. Since the droop control is the basic control strategy for load sharing in DC microgrid applications, however, the load sharing accuracy is degraded under conventional droop control method due to the unmatched line impedance in reality. Meanwhile, the initial state-of-charge values and capacities of each distributed energy storage unit are usually different. Hence, the state of charge for distributed energy storage units cannot be balanced. In order to prolong the lifetime of the distributed energy storage units and avoid the overuse of a certain distributed energy storage unit, the optimised droop control strategy based on sample and holder is designed, by modifying the droop coefficient adaptively, the accurate load sharing and balanced state of charge among distributed energy storage units are both obtained. Finally, the performance of the proposed control scheme is accessed through a series cases on technologies real-time digital simulator (RTDS) and its effectiveness is verified.
引用
收藏
页码:1021 / 1030
页数:10
相关论文
共 37 条
[1]   Distributed Control to Ensure Proportional Load Sharing and Improve Voltage Regulation in Low-Voltage DC Microgrids [J].
Anand, Sandeep ;
Fernandes, Baylon G. ;
Guerrero, Josep M. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2013, 28 (04) :1900-1913
[2]   Adaptive Droop Control Strategy for Load Sharing and Circulating Current Minimization in Low-Voltage Standalone DC Microgrid [J].
Augustine, Sijo ;
Mishra, Mahesh K. ;
Lakshminarasamma, N. .
IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2015, 6 (01) :132-141
[3]   Nonlinear Load Sharing and Voltage Compensation of Microgrids Based on Harmonic Power-Flow Calculations Using Radial Basis Function Neural Networks [J].
Baghaee, Hamid Reza ;
Mirsalim, Mojtaba ;
Gharehpetan, Gevork B. ;
Talebi, Heidar Ali .
IEEE SYSTEMS JOURNAL, 2018, 12 (03) :2749-2759
[4]   Distributed Cooperative Control and Stability Analysis of Multiple DC Electric Springs in a DC Microgrid [J].
Chen, Xia ;
Shi, Mengxuan ;
Sun, Haishun ;
Li, Yan ;
He, Haibo .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (07) :5611-5622
[5]   Supervisory Control of an Adaptive-Droop Regulated DC Microgrid With Battery Management Capability [J].
Dragicevic, Tomislav ;
Guerrero, Josep M. ;
Vasquez, Juan C. ;
Skrlec, Davor .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2014, 29 (02) :695-706
[6]   Distributed charge/discharge control of energy storages in a renewable-energy-based DC micro-grid [J].
Eghtedarpour, Navid ;
Farjah, Ebrahim .
IET RENEWABLE POWER GENERATION, 2014, 8 (01) :45-57
[7]   Decentralized control for parallel operation of distributed generation inverters using resistive output impedance [J].
Guerrero, Josep M. ;
Matas, Jose ;
Garcia de Vicuna, Luis ;
Castilla, Miguel ;
Miret, Jaume .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2007, 54 (02) :994-1004
[8]   Hierarchical Control of Droop-Controlled AC and DC Microgrids-A General Approach Toward Standardization [J].
Guerrero, Josep M. ;
Vasquez, Juan C. ;
Matas, Jose ;
Garci de Vicuna, Luis ;
Castilla, Miguel .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2011, 58 (01) :158-172
[9]   Probabilistic Optimal Reactive Power Planning With Onshore and Offshore Wind Generation, EV, and PV Uncertainties [J].
Gupta, Neeraj .
IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2020, 56 (04) :4200-4213
[10]   Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids [J].
Han, Yang ;
Li, Hong ;
Shen, Pan ;
Alves Coelho, Ernane Antonio ;
Guerrero, Josep M. .
IEEE TRANSACTIONS ON POWER ELECTRONICS, 2017, 32 (03) :2427-2451