Fix-point multiplier distributions in discrete turbulent cascade models

被引:19
作者
Jouault, B
Greiner, M
Lipa, P
机构
[1] Max Planck Inst Phys Komplexer Syst, D-01187 Dresden, Germany
[2] Univ Arizona, Dept Radiat Oncol, Tucson, AZ 85721 USA
来源
PHYSICA D | 2000年 / 136卷 / 1-2期
关键词
fully developed turbulence; multiplicative branching processes; multiplier distribution; fix-point behaviour;
D O I
10.1016/S0167-2789(99)00148-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
One-point time-series measurements limit the observation of three-dimensional fully developed turbulence to one dimension. For one-dimensional models, like multiplicative branching processes, this implies that the energy flux from large to small scales is not conserved locally. This then renders the random weights used in the cascade curdling to be different from the multipliers obtained from a backward averaging procedure. The resulting multiplier distributions become solutions of a fix-point problem. With a further restoration of homogeneity, all observed correlations between multipliers in the energy dissipation field can be understood in terms of simple scale-invariant multiplicative branching processes. (C)2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:125 / 144
页数:20
相关论文
共 25 条
[1]   RANDOM CASCADING MODELS AND THE LINK BETWEEN LONG-RANGE AND SHORT-RANGE INTERACTIONS IN MULTIPARTICLE PRODUCTION [J].
BIALAS, A ;
PESCHANSKI, R .
PHYSICS LETTERS B, 1988, 207 (01) :59-63
[2]   SCALE-INVARIANT MULTIPLIER DISTRIBUTIONS IN TURBULENCE [J].
CHHABRA, AB ;
SREENIVASAN, KR .
PHYSICAL REVIEW LETTERS, 1992, 68 (18) :2762-2765
[3]   INTERMITTENCY IN FULLY-DEVELOPED TURBULENCE - LOG-POISSON STATISTICS AND GENERALIZED SCALE COVARIANCE [J].
DUBRULLE, B .
PHYSICAL REVIEW LETTERS, 1994, 73 (07) :959-962
[4]   SIMPLE DYNAMICAL MODEL OF INTERMITTENT FULLY DEVELOPED TURBULENCE [J].
FRISCH, U ;
SULEM, PL ;
NELKIN, M .
JOURNAL OF FLUID MECHANICS, 1978, 87 (AUG) :719-736
[5]  
Frisch U., 1995, TURBULENCE, DOI [10.1017/CBO9781139170666, DOI 10.1017/CBO9781139170666]
[6]   Translational invariance in turbulent cascade models [J].
Greiner, M ;
Giesemann, J ;
Lipa, P .
PHYSICAL REVIEW E, 1997, 56 (04) :4263-4274
[7]   Spatial correlations of singularity strengths in multifractal branching processes [J].
Greiner, M ;
Schmiegel, J ;
Eickemeyer, F ;
Lipa, P ;
Eggers, HC .
PHYSICAL REVIEW E, 1998, 58 (01) :554-564
[8]   Analytic multivariate generating function for random multiplicative cascade processes [J].
Greiner, M ;
Eggers, HC ;
Lipa, P .
PHYSICAL REVIEW LETTERS, 1998, 80 (24) :5333-5336
[9]   Wavelet correlations in hierarchical branching processes [J].
Greiner, M ;
Giesemann, J ;
Lipa, P ;
Carruthers, P .
ZEITSCHRIFT FUR PHYSIK C-PARTICLES AND FIELDS, 1996, 69 (02) :305-321
[10]   WAVELET CORRELATIONS IN THE P-MODEL [J].
GREINER, M ;
LIPA, P ;
CARRUTHERS, P .
PHYSICAL REVIEW E, 1995, 51 (03) :1948-1960