Particle-hole pairs and density-density correlations in the Lieb-Liniger model

被引:24
作者
De Nardis, J. [1 ]
Panfil, M. [2 ]
机构
[1] PSL Res Univ, CNRS, Ecole Normale Super, Dept Phys, 24 Rue Lhomond, F-75005 Paris, France
[2] Univ Warsaw, Inst Theoret Phys, Ul Pasteura 5, PL-02093 Warsaw, Poland
关键词
correlation functions; form factors; Lieb-Liniger model; non-linear Schroedinger equation; FORM-FACTORS; BOSE-GAS; SCATTERING; BOSONS; CHAIN;
D O I
10.1088/1742-5468/aab012
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We review the recently introduced thermodynamic form factors for pairs of particle-hole excitations on finite-entropy states in the Lieb-Liniger model. We focus on the density operator and we show how the form factors can be used for analytic computations of dynamical correlation functions. We derive a new representation for the form factors and we discuss some aspects of their structure. We rigorously show that in the small momentum limit (or equivalently, on hydrodynamic scales) a single particle-hole excitation fully saturates the spectral sum and we also discuss the contribution from two particle-hole pairs. Finally we show that thermodynamic form factors can be also used to study the ground state correlations and to derive the edge exponents.
引用
收藏
页数:43
相关论文
共 87 条
[41]   Higher-order generalized hydrodynamics in one dimension: The noninteracting test [J].
Fagotti, Maurizio .
PHYSICAL REVIEW B, 2017, 96 (22)
[42]   Momentum-Space Correlations of a One-Dimensional Bose Gas [J].
Fang, Bess ;
Johnson, Aisling ;
Roscilde, Tommaso ;
Bouchoule, Isabelle .
PHYSICAL REVIEW LETTERS, 2016, 116 (05)
[43]   Quench-Induced Breathing Mode of One-Dimensional Bose Gases [J].
Fang, Bess ;
Carleo, Giuseppe ;
Johnson, Aisling ;
Bouchoule, Isabelle .
PHYSICAL REVIEW LETTERS, 2014, 113 (03)
[44]   Fluctuation-dissipation relations and critical quenches in the transverse field Ising chain [J].
Foini, Laura ;
Cugliandolo, Leticia F. ;
Gambassi, Andrea .
PHYSICAL REVIEW B, 2011, 84 (21)
[45]   Split Fermi seas in one-dimensional Bose fluids [J].
Fokkema, T. ;
Eliens, I. S. ;
Caux, J-S .
PHYSICAL REVIEW A, 2014, 89 (03)
[46]   Thermal form-factor approach to dynamical correlation functions of integrable lattice models [J].
Goehmann, Frank ;
Karbach, Michael ;
Kluemper, Andreas ;
Kozlowski, Karol K. ;
Suzuki, Junji .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2017,
[47]   Integral representations for correlation functions of the XXZ chain at finite temperature [J].
Göhmann, F ;
Klümper, A ;
Seel, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (31) :7625-7651
[48]   EFFECTIVE HARMONIC-FLUID APPROACH TO LOW-ENERGY PROPERTIES OF ONE-DIMENSIONAL QUANTUM FLUIDS [J].
HALDANE, FDM .
PHYSICAL REVIEW LETTERS, 1981, 47 (25) :1840-1843
[49]   One-dimensional quantum liquids: Beyond the Luttinger liquid paradigm [J].
Imambekov, Adilet ;
Schmidt, Thomas L. ;
Glazman, Leonid I. .
REVIEWS OF MODERN PHYSICS, 2012, 84 (03) :1253-1306
[50]   Exact exponents of edge singularities in dynamic correlation functions of 1D Bose gas [J].
Imambekov, Adilet ;
Glazman, Leonid I. .
PHYSICAL REVIEW LETTERS, 2008, 100 (20)