Germline Variation in Cancer-Susceptibility Genes in a Healthy, Ancestrally Diverse Cohort: Implications for Individual Genome Sequencing

被引:79
作者
Bodian, Dale L. [1 ]
McCutcheon, Justine N. [1 ]
Kothiyal, Prachi [1 ]
Huddleston, Kathi C. [1 ]
Iyer, Ramaswamy K. [1 ]
Vockley, Joseph G. [1 ]
Niederhuber, John E. [1 ]
机构
[1] Inova Hlth Syst, Inova Translat Med Inst, Falls Church, VA 22042 USA
来源
PLOS ONE | 2014年 / 9卷 / 04期
关键词
RISK PREDICTION MODELS; BREAST-CANCER; CRYSTAL-STRUCTURE; TUMOR-SUPPRESSOR; BRCA2; MUTATIONS; DNA-BINDING; VARIANTS; COMPLEX; DOMAIN; EXOME;
D O I
10.1371/journal.pone.0094554
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Technological advances coupled with decreasing costs are bringing whole genome and whole exome sequencing closer to routine clinical use. One of the hurdles to clinical implementation is the high number of variants of unknown significance. For cancer-susceptibility genes, the difficulty in interpreting the clinical relevance of the genomic variants is compounded by the fact that most of what is known about these variants comes from the study of highly selected populations, such as cancer patients or individuals with a family history of cancer. The genetic variation in known cancer-susceptibility genes in the general population has not been well characterized to date. To address this gap, we profiled the nonsynonymous genomic variation in 158 genes causally implicated in carcinogenesis using high-quality whole genome sequences from an ancestrally diverse cohort of 681 healthy individuals. We found that all individuals carry multiple variants that may impact cancer susceptibility, with an average of 68 variants per individual. Of the 2,688 allelic variants identified within the cohort, most are very rare, with 75% found in only 1 or 2 individuals in our population. Allele frequencies vary between ancestral groups, and there are 21 variants for which the minor allele in one population is the major allele in another. Detailed analysis of a selected subset of 5 clinically important cancer genes, BRCA1, BRCA2, KRAS, TP53, and PTEN, highlights differences between germline variants and reported somatic mutations. The dataset can serve a resource of genetic variation in cancer-susceptibility genes in 6 ancestry groups, an important foundation for the interpretation of cancer risk from personal genome sequences.
引用
收藏
页数:12
相关论文
共 83 条
[1]   Analysis of missense variation in human BRCA1 in the context of interspecific sequence variation [J].
Abkevich, V ;
Zharkikh, A ;
Deffenbaugh, AM ;
Frank, D ;
Chen, Y ;
Shattuck, D ;
Skolnick, MH ;
Gutin, A ;
Tavtigian, SV .
JOURNAL OF MEDICAL GENETICS, 2004, 41 (07) :492-507
[2]   A method and server for predicting damaging missense mutations [J].
Adzhubei, Ivan A. ;
Schmidt, Steffen ;
Peshkin, Leonid ;
Ramensky, Vasily E. ;
Gerasimova, Anna ;
Bork, Peer ;
Kondrashov, Alexey S. ;
Sunyaev, Shamil R. .
NATURE METHODS, 2010, 7 (04) :248-249
[3]   Accurate and comprehensive sequencing of personal genomes [J].
Ajay, Subramanian S. ;
Parker, Stephen C. J. ;
Abaan, Hatice Ozel ;
Fajardo, Karin V. Fuentes ;
Margulies, Elliott H. .
GENOME RESEARCH, 2011, 21 (09) :1498-1505
[4]   Fast model-based estimation of ancestry in unrelated individuals [J].
Alexander, David H. ;
Novembre, John ;
Lange, Kenneth .
GENOME RESEARCH, 2009, 19 (09) :1655-1664
[5]   An integrated map of genetic variation from 1,092 human genomes [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Schmidt, Jeanette P. ;
Sherry, Stephen T. ;
Wang, Jun ;
Wilson, Richard K. ;
Gibbs, Richard A. ;
Dinh, Huyen ;
Kovar, Christie ;
Lee, Sandra ;
Lewis, Lora ;
Muzny, Donna ;
Reid, Jeff ;
Wang, Min ;
Wang, Jun ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Li, Zhuo ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Su, Zhe ;
Tai, Shuaishuai ;
Tang, Meifang .
NATURE, 2012, 491 (7422) :56-65
[6]  
[Anonymous], 2019, R: A language for environment for statistical computing
[7]  
[Anonymous], CLEV CLIN 9 ANN NURS
[8]  
[Anonymous], GENET MED
[9]   Risk prediction models of breast cancer: a systematic review of model performances [J].
Anothaisintawee, Thunyarat ;
Teerawattananon, Yot ;
Wiratkapun, Chollathip ;
Kasamesup, Vijj ;
Thakkinstian, Ammarin .
BREAST CANCER RESEARCH AND TREATMENT, 2012, 133 (01) :1-10
[10]   The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions [J].
Antoniou, A. C. ;
Cunningham, A. P. ;
Peto, J. ;
Evans, D. G. ;
Lalloo, F. ;
Narod, S. A. ;
Risch, H. A. ;
Eyfjord, J. E. ;
Hopper, J. L. ;
Southey, M. C. ;
Olsson, H. ;
Johannsson, O. ;
Borg, A. ;
Passini, B. ;
Radice, P. ;
Manoukian, S. ;
Eccles, D. M. ;
Tang, N. ;
Olah, E. ;
Anton-Culver, H. ;
Warner, E. ;
Lubinski, J. ;
Gronwald, J. ;
Gorski, B. ;
Tryggvadottir, L. ;
Syrjakoski, K. ;
Kallioniemi, O-P ;
Eerola, H. ;
Nevanlinna, H. ;
Pharoah, P. D. P. ;
Easton, D. F. .
BRITISH JOURNAL OF CANCER, 2008, 98 (08) :1457-1466