Autoregressive Higher-Order Hidden Markov Models: Exploiting Local Chromosomal Dependencies in the Analysis of Tumor Expression Profiles

被引:19
作者
Seifert, Michael [1 ]
Abou-El-Ardat, Khalil [2 ]
Friedrich, Betty [1 ]
Klink, Barbara [2 ]
Deutsch, Andreas [1 ]
机构
[1] Tech Univ Dresden, Ctr Informat Serv & High Performance Comp, Dresden, Germany
[2] Tech Univ Dresden, Fac Med Carl Gustav Carus, Inst Clin Genet, Dresden, Germany
关键词
COPY-NUMBER ALTERATION; ARRAY CGH; ANALYSIS REVEALS; CANCER; PATTERNS; SUBTYPES;
D O I
10.1371/journal.pone.0100295
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Changes in gene expression programs play a central role in cancer. Chromosomal aberrations such as deletions, duplications and translocations of DNA segments can lead to highly significant positive correlations of gene expression levels of neighboring genes. This should be utilized to improve the analysis of tumor expression profiles. Here, we develop a novel model class of autoregressive higher-order Hidden Markov Models (HMMs) that carefully exploit local data-dependent chromosomal dependencies to improve the identification of differentially expressed genes in tumor. Autoregressive higher-order HMMs overcome generally existing limitations of standard first-order HMMs in the modeling of dependencies between genes in close chromosomal proximity by the simultaneous usage of higher-order state-transitions and autoregressive emissions as novel model features. We apply autoregressive higher-order HMMs to the analysis of breast cancer and glioma gene expression data and perform in-depth model evaluation studies. We find that autoregressive higher-order HMMs clearly improve the identification of overexpressed genes with underlying gene copy number duplications in breast cancer in comparison to mixture models, standard first-and higher-order HMMs, and other related methods. The performance benefit is attributed to the simultaneous usage of higher-order state-transitions in combination with autoregressive emissions. This benefit could not be reached by using each of these two features independently. We also find that autoregressive higher-order HMMs are better able to identify differentially expressed genes in tumors independent of the underlying gene copy number status in comparison to the majority of related methods. This is further supported by the identification of well-known and of previously unreported hotspots of differential expression in glioblastomas demonstrating the efficacy of autoregressive higher-order HMMs for the analysis of individual tumor expression profiles. Moreover, we reveal interesting novel details of systematic alterations of gene expression levels in known cancer signaling pathways distinguishing oligodendrogliomas, astrocytomas and glioblastomas. An implementation is available under www.jstacs.de/index.php/ARHMM.
引用
收藏
页数:15
相关论文
共 64 条
[1]  
Aycard O., 2004, International Journal of Advanced Robotic Systems, V1, P231
[2]  
Baum L. E., 1972, Inequalities, V3, P1
[3]   Extension of higher-order HMC modeling with application to image segmentation [J].
Benyoussef, Lamia ;
Carincotte, Cyril ;
Derrode, Stephane .
DIGITAL SIGNAL PROCESSING, 2008, 18 (05) :849-860
[4]  
Berchtold A, 2002, STAT SCI, V17, P328
[5]   The landscape of somatic copy-number alteration across human cancers [J].
Beroukhim, Rameen ;
Mermel, Craig H. ;
Porter, Dale ;
Wei, Guo ;
Raychaudhuri, Soumya ;
Donovan, Jerry ;
Barretina, Jordi ;
Boehm, Jesse S. ;
Dobson, Jennifer ;
Urashima, Mitsuyoshi ;
Mc Henry, Kevin T. ;
Pinchback, Reid M. ;
Ligon, Azra H. ;
Cho, Yoon-Jae ;
Haery, Leila ;
Greulich, Heidi ;
Reich, Michael ;
Winckler, Wendy ;
Lawrence, Michael S. ;
Weir, Barbara A. ;
Tanaka, Kumiko E. ;
Chiang, Derek Y. ;
Bass, Adam J. ;
Loo, Alice ;
Hoffman, Carter ;
Prensner, John ;
Liefeld, Ted ;
Gao, Qing ;
Yecies, Derek ;
Signoretti, Sabina ;
Maher, Elizabeth ;
Kaye, Frederic J. ;
Sasaki, Hidefumi ;
Tepper, Joel E. ;
Fletcher, Jonathan A. ;
Tabernero, Josep ;
Baselga, Jose ;
Tsao, Ming-Sound ;
Demichelis, Francesca ;
Rubin, Mark A. ;
Janne, Pasi A. ;
Daly, Mark J. ;
Nucera, Carmelo ;
Levine, Ross L. ;
Ebert, Benjamin L. ;
Gabriel, Stacey ;
Rustgi, Anil K. ;
Antonescu, Cristina R. ;
Ladanyi, Marc ;
Letai, Anthony .
NATURE, 2010, 463 (7283) :899-905
[6]  
Bilmes JA., 1998, GENTLE TUTORIAL EM A
[7]   A locally adaptive statistical procedure (LAP) to identify differentially expressed chromosomal regions [J].
Callegaro, A. ;
Basso, D. ;
Bicciato, S. .
BIOINFORMATICS, 2006, 22 (21) :2658-2666
[8]   Hidden Markov based autoregressive analysis of stationary and non-stationary electrophysiological signals for functional coupling studies [J].
Cassidy, MJ ;
Brown, P .
JOURNAL OF NEUROSCIENCE METHODS, 2002, 116 (01) :35-53
[9]   Functional implications of genome topology [J].
Cavalli, Giacomo ;
Misteli, Tom .
NATURE STRUCTURAL & MOLECULAR BIOLOGY, 2013, 20 (03) :290-299
[10]   Comprehensive genomic characterization defines human glioblastoma genes and core pathways [J].
Chin, L. ;
Meyerson, M. ;
Aldape, K. ;
Bigner, D. ;
Mikkelsen, T. ;
VandenBerg, S. ;
Kahn, A. ;
Penny, R. ;
Ferguson, M. L. ;
Gerhard, D. S. ;
Getz, G. ;
Brennan, C. ;
Taylor, B. S. ;
Winckler, W. ;
Park, P. ;
Ladanyi, M. ;
Hoadley, K. A. ;
Verhaak, R. G. W. ;
Hayes, D. N. ;
Spellman, Paul T. ;
Absher, D. ;
Weir, B. A. ;
Ding, L. ;
Wheeler, D. ;
Lawrence, M. S. ;
Cibulskis, K. ;
Mardis, E. ;
Zhang, Jinghui ;
Wilson, R. K. ;
Donehower, L. ;
Wheeler, D. A. ;
Purdom, E. ;
Wallis, J. ;
Laird, P. W. ;
Herman, J. G. ;
Schuebel, K. E. ;
Weisenberger, D. J. ;
Baylin, S. B. ;
Schultz, N. ;
Yao, Jun ;
Wiedemeyer, R. ;
Weinstein, J. ;
Sander, C. ;
Gibbs, R. A. ;
Gray, J. ;
Kucherlapati, R. ;
Lander, E. S. ;
Myers, R. M. ;
Perou, C. M. ;
McLendon, Roger .
NATURE, 2008, 455 (7216) :1061-1068