Experimental and numerical assessment of the equivalent-orthotropic-thin-plate model for bending of corrugated panels

被引:23
作者
Aoki, Yohko [1 ]
Maysenhoelder, Waldemar [1 ]
机构
[1] Fraunhofer Inst Bldg Phys, Dept Acoust, Nobelstr 12, D-70569 Stuttgart, Germany
关键词
Corrugated panel; Equivalent stiffness; Equivalent plate model; Orthotropic; Anisotropic; Sinusoid; Trapezoid; Bending; Vibration mode; Natural frequency; FREE GALERKIN METHOD; IDENTIFICATION; VIBRATION;
D O I
10.1016/j.ijsolstr.2016.07.042
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Numerous papers deal with the Equivalent Plate Model (EPM) for corrugated panels. Comparison of published formulas for the four relevant equivalent bending stiffnesses D-11(eq), D-22(eq), D-66(eq), and D-12(eq) revealed ambiguities: Three different formulas were found for D-22(eq), which describes the bending of the ridges and troughs; for D-66(eq) two 'competing' formulas emerged. Expressions not converging to the flat-plate values in the limit of vanishing corrugation height were discarded. All discussed formulas are written in a uniform notation for general one-dimensionally periodic shapes. Formulas derived for isotropic panel materials were generalized to the orthotropic case. In order to resolve the ambiguities and assess the EPM with regard to its range of applicability, vibration modes of six rectangular corrugated panels were measured. While agreement with numerical results obtained with COMSOL was fair, the EPM predictions of natural frequencies were satisfactory only for low-order modes. Finally, equivalent bending stiffnesses were determined numerically from COMSOL results for a few low-order modes by inverse methods. Thus the ambiguities with regard to D-22(eq) and D-66(eq) could be resolved. However, the D-12(eq) values determined numerically came out significantly larger than the EPM prediction, in particular for stronger corrugations. Even though this discrepancy had little effect on the natural frequencies tested in the present paper, it remains a theoretical challenge. (C) 2016 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:11 / 23
页数:13
相关论文
共 29 条