A self-powered system based on triboelectric nanogenerators and supercapacitors for metal corrosion prevention

被引:75
|
作者
Li, Xiaoyi [1 ,2 ]
Tao, Juan [2 ]
Guo, Wenxi [2 ,4 ,5 ]
Zhang, Xiaojia [2 ]
Luo, Jianjun [2 ]
Chen, Mengxiao [2 ]
Zhu, Jing [1 ,3 ]
Pan, Caofeng [2 ]
机构
[1] Tsinghua Univ, State Key Lab New Ceram & Fine Proc, Natl Ctr Elect Microscopy Beijing, Sch Mat Sci & Engn,Key Lab Adv Mat MOE, Beijing 100084, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing, Peoples R China
[3] Tsinghua Univ, Ctr Nano & Micro Mech, Beijing 100084, Peoples R China
[4] Xiamen Univ, Res Inst Biomimet & So Matter, Xiamen 361005, Peoples R China
[5] Xiamen Univ, Dept Phys, Xiamen 361005, Peoples R China
基金
中国国家自然科学基金;
关键词
WATER-WAVE ENERGY; CATHODIC PROTECTION; CONTACT-ELECTRIFICATION; CONVERSION; GRAPHENE; STORAGE; PERFORMANCE; CONCRETE; DEVICES; SURFACE;
D O I
10.1039/c5ta07053h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
As water covers most of the earth's surface, the energy of the ocean is abundant and almost unexplored, which can be one of the most environmentally friendly forms of energy. Prevention of metal corrosion plays an important role in national economic development and daily life. Here, we report a network of triboelectric nanogenerators (TENGs) and supercapacitors (SCs), which is also called the self-powered system, to harvest a huge amount of water energy for preventing metal corrosion. When the TENG is integrated with a SC, the output current is stable and continuous. The corrosion results indicate that the TENG-SC self-powered system can prevent about 80% degree of corrosion for Q235 steel in 0.5 M NaCl solution. This work demonstrates that the TENG-SC system, which is self-powered, flexible and environmentally friendly, can harvest and store large-scale blue energy from the ocean, and also renders an innovative approach toward preventing the metal corrosion without other power sources.
引用
收藏
页码:22663 / 22668
页数:6
相关论文
共 50 条
  • [1] Flexible self-powered supercapacitors integrated with triboelectric nanogenerators
    Rani, Shalu
    Khandelwal, Gaurav
    Kumar, Sanjay
    Pillai, Suresh C.
    Stylios, George K.
    Gadegaard, Nikolaj
    Mulvihill, Daniel M.
    ENERGY STORAGE MATERIALS, 2025, 74
  • [2] Triboelectric Nanogenerators as a Self-Powered Motion Tracking System
    Chen, Mengxiao
    Li, Xiaoyi
    Lin, Long
    Du, Weiming
    Han, Xun
    Zhu, Jing
    Pan, Caofeng
    Wang, Zhong Lin
    ADVANCED FUNCTIONAL MATERIALS, 2014, 24 (32) : 5059 - 5066
  • [3] Triboelectric nanogenerators for self-powered neurostimulation
    Xu, Shumao
    Manshaii, Farid
    Xiao, Xiao
    Yin, Junyi
    Chen, Jun
    NANO RESEARCH, 2024, 17 (10) : 8926 - 8941
  • [4] Self-powered electroporation technologies based on triboelectric nanogenerators
    Liu, Yitong
    Wang, Peng
    Wang, Congyu
    Yao, Shengxun
    Zhang, Dun
    NANO ENERGY, 2024, 123
  • [5] Self-Powered Smart Gloves Based on Triboelectric Nanogenerators
    Shen, Sophia
    Xiao, Xiao
    Yin, Junyi
    Chen, Jun
    SMALL METHODS, 2022, 6 (10):
  • [6] Walking energy harvesting and self-powered tracking system based on triboelectric nanogenerators
    Yao, Mingliang
    Xie, Guangzhong
    Gong, Qichen
    Su, Yuanjie
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2020, 11 : 1590 - 1595
  • [7] Walking energy harvesting and self-powered tracking system based on triboelectric nanogenerators
    Yao M.
    Xie G.
    Gong Q.
    Su Y.
    Beilstein Journal of Nanotechnology, 2020, 11 : 1590 - 1595
  • [8] Self-Powered Hybrid Motion and Health Sensing System Based on Triboelectric Nanogenerators
    Zhang, Maoqin
    Yan, Wei
    Ma, Weiting
    Deng, Yuheng
    Song, Weixing
    SMALL, 2024,
  • [9] Triboelectric Nanogenerators for Self-Powered Wound Healing
    Xiao, Xiao
    Nashalian, Ardo
    Libanori, Alberto
    Fang, Yunsheng
    Li, Xiyao
    Chen, Jun
    ADVANCED HEALTHCARE MATERIALS, 2021, 10 (20)
  • [10] Advances in Triboelectric Nanogenerators for Self-powered Neuromodulation
    Elsanadidy, Esraa
    Mosa, Islam M.
    Luo, Dan
    Xiao, Xiao
    Chen, Jun
    Wang, Zhong Lin
    Rusling, James F.
    ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (08)