Extensions of exchange rings

被引:85
作者
Ara, P
机构
[1] Department de Matemàtiques, Universitat Autonoma de Barcelona, 08193, Bellaterra, Barcelona
关键词
D O I
10.1006/jabr.1997.7116
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define non-unital exchange rings and we prove that if I is an ideal of a ring R, then R is an exchange ring if and only if I and R/I are exchange rings and idempotents can be lifted module I. We also show that we can replace the condition on liftability of idempotents with the condition that the canonical map K-0(R) --> K-0(R/I) be sujective. (C) 1997 Academic Press.
引用
收藏
页码:409 / 423
页数:15
相关论文
共 22 条
[2]  
ARA P, IN PRESS ISRAEL J MA
[3]  
BACCELLA G, RIGHT SEMIARTINIAN R
[4]  
Blackadar B., 1986, MSRI PUBLICATIONS, V5
[5]   C-STAR-ALGEBRAS OF REAL RANK ZERO [J].
BROWN, LG ;
PEDERSEN, GK .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 99 (01) :131-149
[6]   STABLE RANGE ONE FOR RINGS WITH MANY IDEMPOTENTS [J].
CAMILLO, VP ;
YU, HP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 347 (08) :3141-3147
[7]   REFINEMENTS FOR INFINITE DIRECT DECOMPOSITIONS OF ALGEBRAIC SYSTEMS [J].
CRAWLEY, P ;
JONSSON, B .
PACIFIC JOURNAL OF MATHEMATICS, 1964, 14 (03) :797-&
[8]  
Goodearl K. R., 1991, NEUMANN REGULAR RING
[9]   ALGEBRAS OVER ZERO-DIMENSIONAL RINGS [J].
GOODEARL, KR ;
WARFIELD, RB .
MATHEMATISCHE ANNALEN, 1976, 223 (02) :157-168
[10]  
Jacobson N., 1964, AM MATH SOC C PUBL, V37