On the p-divisibility of Fermat quotients

被引:52
作者
Ernvall, R [1 ]
Metsankyla, T [1 ]
机构
[1] TURKU UNIV,DEPT MATH,FIN-20014 TURKU,FINLAND
关键词
Fermat quotients; computation; Fermat's equation; Catalan's equation; cyclotomic fields;
D O I
10.1090/S0025-5718-97-00843-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The authors carried out a numerical search for Fermat quotients Q(a) = (a(p - 1) - 1)/p, vanishing mod p, for 1 less than or equal to a less than or equal to p - 1, up to p < 10(6). This article reports on the results and surveys the associated theoretical properties of Q(a). The approach of fixing the prime p rather than the base a leads to some aspects of the theory apparently not published before.
引用
收藏
页码:1353 / 1365
页数:13
相关论文
共 31 条
[1]   CATALAN EQUATION XP-YQ=1 AND RELATED CONGRUENCES [J].
AALTONEN, M ;
INKERI, K .
MATHEMATICS OF COMPUTATION, 1991, 56 (193) :359-370
[2]  
[Anonymous], B AM MATH SOC
[3]  
BRILLHART J, 1971, COMPUTERS NUMBER THE, P213
[4]   IRREGULAR PRIMES AND CYCLOTOMIC INVARIANTS TO 4 MILLION [J].
BUHLER, J ;
CRANDALL, R ;
ERNVALL, R ;
METSANKYLA, T .
MATHEMATICS OF COMPUTATION, 1993, 61 (203) :151-153
[5]   FERMAT LAST THEOREM (CASE-1) AND THE WIEFERICH CRITERION [J].
COPPERSMITH, D .
MATHEMATICS OF COMPUTATION, 1990, 54 (190) :895-902
[6]   A search for Wieferich and Wilson primes [J].
Crandall, R ;
Dilcher, K ;
Pomerance, C .
MATHEMATICS OF COMPUTATION, 1997, 66 (217) :433-449
[7]  
Dickson Leonard Eugene, 1952, History of Theory of Numbers
[8]   CYCLOTOMIC INVARIANTS FOR PRIMES BETWEEN 125000 AND 150000 [J].
ERNVALL, R ;
METSANKYLA, T .
MATHEMATICS OF COMPUTATION, 1991, 56 (194) :851-858
[9]   ON THE KUMMER-MIRIMANOFF CONGRUENCES [J].
FOUCHE, WL .
QUARTERLY JOURNAL OF MATHEMATICS, 1986, 37 (147) :257-261
[10]  
Granville A., 1988, SOME CONJECTURES REL, P177