Numerical algorithms for approximation of fractional integral operators based on quadratic interpolation

被引:14
作者
Blaszczyk, Tomasz [1 ]
Siedlecki, Jaroslaw [1 ]
Ciesielski, Mariusz [2 ]
机构
[1] Czestochowa Tech Univ, Inst Math, Al Armii Krajowej 21, PL-42200 Czestochowa, Poland
[2] Czestochowa Tech Univ, Inst Comp & Informat Sci, Dabrowskiego 73, PL-42200 Czestochowa, Poland
关键词
fractional integrals; numerical algorithms; quadratic interpolation; Simpson's rule; HEAT-CONDUCTION; EQUATION;
D O I
10.1002/mma.4828
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present numerical algorithms calculating compositions of the left and right fractional integrals. We apply quadratic interpolation and obtain the fractional Simpson's rule. We estimate the local truncation error of the proposed approximations, calculate errors generated by presented algorithms, and determine the experimental rate of convergence. Finally, we show examples of numerical evaluation of these operators.
引用
收藏
页码:3345 / 3355
页数:11
相关论文
共 32 条
[1]  
[Anonymous], 2006, THEORY APPL FRACTION
[2]  
[Anonymous], 1994, GEN FRACTIONAL CALCU
[3]  
[Anonymous], 1974, The fractional calculus theory and applications of differentiation and integration to arbitrary order, DOI DOI 10.1016/S0076-5392(09)60219-8
[4]  
[Anonymous], 1999, FRACTIONAL DIFFERENT
[5]  
[Anonymous], 2007, NUMERICAL RECIPES
[6]  
Atanackovic T.M., 2014, Fractional Calculus with Applications in Mechanics: Vibrations and Diffusion Processes
[7]  
Baleanu D, 2012, Fractional Calculus: Models and Numerical Methods
[8]   On exact solutions of a class of fractional Euler-Lagrange equations [J].
Baleanu, Dumitru ;
Trujillo, Juan J. .
NONLINEAR DYNAMICS, 2008, 52 (04) :331-335
[9]   Fractional Bateman-Feshbach Tikochinsky Oscillator [J].
Baleanu, Dumitru ;
Asad, Jihad H. ;
Petras, Ivo .
COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 61 (02) :221-225
[10]   Numerical solution of the one phase 1D fractional Stefan problem using the front fixing method [J].
Blasik, Marek ;
Klimek, Malgorzata .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2015, 38 (15) :3214-3228