Regularity of random attractors for a degenerate parabolic equations driven by additive noises

被引:30
作者
Zhao, Wen-Qiang [1 ]
机构
[1] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
关键词
Random dynamical system; Stochastic degenerate parabolic equations; Additive noises; Random attractors; Omega-limit compactness; REACTION-DIFFUSION EQUATIONS; GLOBAL ATTRACTORS; H-1-RANDOM ATTRACTORS; EXISTENCE;
D O I
10.1016/j.amc.2014.04.106
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the regularity of random attractors for a class of stochastic degenerate parabolic equations with the leading term involving a diffusion variable sigma which many be non-smooth or unbounded. Without any restrictions on the upper growth order p of the non-linearity, except that p >= 2, we show that the associated random dynamical system admits a unique compact random attractor in the space D-0(1,2) (D-N, sigma) boolean AND L-pi(D-N) for any pi is an element of[2, 2p - 2], where D-N is an arbitrary (bounded or unbounded) domain in R-N, N >= 2. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:358 / 374
页数:17
相关论文
共 40 条
  • [1] Anh C., 2012, ELECTRON J DIFFER EQ, V2012, P1
  • [2] Global existence and long-time behavior of solutions to a class of degenerate parabolic equations
    Anh, Cung The
    Hung, Phan Quoc
    [J]. ANNALES POLONICI MATHEMATICI, 2008, 93 (03) : 217 - 230
  • [3] [Anonymous], 1985, Physical Origins and Classical Methods
  • [4] [Anonymous], 2001, CAM T APP M
  • [5] Arnold L, 1998, Random dynamical systems
  • [6] Random attractors for stochastic reaction-diffusion equations on unbounded domains
    Bates, Peter W.
    Lu, Kening
    Wang, Bixiang
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2009, 246 (02) : 845 - 869
  • [7] On a variational degenerate elliptic problem
    Caldiroli, P
    Musina, R
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2000, 7 (02): : 187 - 199
  • [8] Chueshov I, 2002, LECT NOTES MATH, V1779, P1
  • [9] Random attractors
    Crauel H.
    Debussche A.
    Flandoli F.
    [J]. Journal of Dynamics and Differential Equations, 1997, 9 (2) : 307 - 341
  • [10] ATTRACTORS FOR RANDOM DYNAMICAL-SYSTEMS
    CRAUEL, H
    FLANDOLI, F
    [J]. PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (03) : 365 - 393