Hierarchical Coupling of First-Principles Molecular Dynamics with Advanced Sampling Methods

被引:18
|
作者
Sevgen, Emre [1 ]
Giberti, Federico [1 ]
Sidky, Hythem [2 ]
Whitmer, Jonathan K. [2 ]
Galli, Giulia [1 ]
Gygi, Francois [3 ]
de Pablo, Juan J. [1 ]
机构
[1] Univ Chicago, 5801 S Ellis Ave, Chicago, IL 60637 USA
[2] Univ Notre Dame, Notre Dame, IN 46556 USA
[3] Univ Calif Davis, 1 Shields Ave, Davis, CA 95616 USA
基金
美国国家科学基金会;
关键词
FORCE-FIELD; ENERGY; SIMULATIONS; WATER; METADYNAMICS; MODEL; ALANINE;
D O I
10.1021/acs.jctc.8b00192
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We present a seamless coupling of a suite of codes designed to perform advanced sampling simulations, with a first-principles molecular dynamics (MD) engine. As an illustrative example, we discuss results for the free energy and potential surfaces of the alanine dipeptide obtained using both local and hybrid density functionals (DFT), and we compare them with those of a widely used classical force field, Amber99sb. In our calculations, the efficiency of first-principles MD using hybrid functionals is augmented by hierarchical sampling, where hybrid free energy calculations are initiated using estimates obtained with local functionals. We find that the free energy surfaces obtained from classical and first-principles calculations differ. Compared to DFT results, the classical force field overestimates the internal energy contribution of high free energy states, and it underestimates the entropic contribution along the entire free energy profile. Using the string method, we illustrate how these differences lead to different transition pathways connecting the metastable minima of the alanine dipeptide. In larger peptides, those differences would lead to qualitatively different results for the equilibrium structure and conformation of these molecules.
引用
收藏
页码:2881 / 2888
页数:8
相关论文
共 50 条
  • [1] First-principles methods for tight-binding molecular dynamics
    Ortega, J
    COMPUTATIONAL MATERIALS SCIENCE, 1998, 12 (03) : 192 - 209
  • [2] First-Principles Molecular Dynamics at a Constant Electrode Potential
    Bonnet, Nicephore
    Morishita, Tetsuya
    Sugino, Osamu
    Otani, Minoru
    PHYSICAL REVIEW LETTERS, 2012, 109 (26)
  • [3] Recent Advances in First-Principles Based Molecular Dynamics
    Mouvet, Franois
    Villard, Justin
    Bolnykh, Viacheslav
    Rothlisberger, Ursula
    ACCOUNTS OF CHEMICAL RESEARCH, 2022, 55 (03) : 221 - 230
  • [4] Ion solvation free energy calculations based on first-principles molecular dynamics thermodynamic integration
    Lin, Chao
    He, Xiaojun
    Xi, Cong
    Zhang, Qianfan
    Wang, Lin-Wang
    JOURNAL OF CHEMICAL PHYSICS, 2024, 160 (18)
  • [5] Machine Learning Classical Interatomic Potentials for Molecular Dynamics from First-Principles Training Data
    Chan, Henry
    Narayanan, Badri
    Cherukara, Mathew J.
    Sen, Fatih G.
    Sasikumar, Kiran
    Gray, Stephen K.
    Chan, Maria K. Y.
    Sankaranarayanan, Subramanian K. R. S.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2019, 123 (12) : 6941 - 6957
  • [6] Effect of temperature on compact layer of Pt electrode in PEMFCs by first-principles molecular dynamics calculations
    He, Yang
    Chen, Chengfeng
    Yu, Haobo
    Lu, Guiwu
    APPLIED SURFACE SCIENCE, 2017, 392 : 109 - 116
  • [7] The Influence of Temperature on the Retention of Methanol by AOT Reverse Micelles: A Molecular Dynamics and First-Principles Study
    Alvarez de la Paz, Antonio
    Matrecitos-Burruel, Ana Mizrahim
    Maldonado, Amir
    Dominguez, Hector
    JOURNAL OF PHYSICAL CHEMISTRY B, 2025,
  • [8] First-principles molecular dynamics study of small molecules in zeolites
    Schwarz, K
    Nusterer, E
    Blöchl, PE
    CATALYSIS TODAY, 1999, 50 (3-4) : 501 - 509
  • [9] First-Principles Studies of the Dynamics of [2]Rotaxane Molecular Switches
    Phoa, Kinyip
    Neaton, J. B.
    Subramanian, Vivek
    NANO LETTERS, 2009, 9 (09) : 3225 - 3229
  • [10] First-principles and classical molecular dynamics simulation of shocked polymers
    Mattsson, Thomas R.
    Lane, J. Matthew D.
    Cochrane, Kyle R.
    Desjarlais, Michael P.
    Thompson, Aidan P.
    Pierce, Flint
    Grest, Gary S.
    PHYSICAL REVIEW B, 2010, 81 (05):