Linking isoconversional pyrolysis kinetics to compositional characteristics for multiple Sorghum bicolor genotypes

被引:10
作者
Hilten, R. [1 ]
Vandenbrink, J. P. [2 ]
Paterson, A. H. [3 ]
Feltus, F. A. [2 ]
Das, K. C. [1 ]
机构
[1] Univ Georgia, Coll Engn, Driftmier Engn Ctr, Athens, GA 30602 USA
[2] Clemson Univ, Dept Biochem & Genet, Clemson, SC 29634 USA
[3] Univ Georgia, Ctr Appl Genet Technol, Plant Genome Mapping Lab, Athens, GA 30602 USA
关键词
Pyrolysis; Activation energy; Sorghum bicolor; Thermal decomposition; TGA; Isoconversional; ACTIVATION-ENERGY;
D O I
10.1016/j.tca.2013.12.012
中图分类号
O414.1 [热力学];
学科分类号
摘要
Pyrolysis activation energy, E-a, was determined using thermogravimetric analysis (TGA) for twenty Sorghum bicolor genotypes using Arrhenius-based, isoconversional kinetics formulations. lsoconversional temperatures (T-alpha) at various conversion levels, alpha from 0.05 to 1.0, were determined using TGA for separate leaf and stem tissue. E-a was then determined rising Kissinger-Akahira-Sunose and Friedman formulations. Observed E-a and predictor variables including conversion level and compositional parameters (e.g. proximate, neutral detergent fiber, lignin, cellulose, and hemicellulose content and crystallinity index, were input to a stepwise regression to build an E-a prediction model. E-a calculated using T-alpha varied with conversion indicating more complex kinetics (multiple reactions) than a single kinetic triplet can describe although averages of observed and predicted E-a were statistically equivalent at 197 and 202 kJ mol(-1), respectively. Additionally, pine wood was evaluated to assess model robustness. With no significant difference between observed and predicted E-a (217 versus 211 kJ mol(-1), respectively), the model appeared robust. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:46 / 52
页数:7
相关论文
共 17 条
[1]  
Akahira T., 1971, RES REPORT CHIBA I T, V16, P22
[2]   Structural FTIR analysis and thermal characterisation of lyocell and viscose-type fibres [J].
Carrillo, A ;
Colom, X ;
Sunol, JJ ;
Saurina, J .
EUROPEAN POLYMER JOURNAL, 2004, 40 (09) :2229-2234
[3]   Biomass valorisation by staged degasification A new pyrolysis-based thermochemical conversion option to produce value-added chemicals from lignocellulosic biomass [J].
de Wild, P. J. ;
den Uil, H. ;
Reith, J. H. ;
Kiel, J. H. A. ;
Heeres, H. J. .
JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS, 2009, 85 (1-2) :124-133
[4]   Bioenergy grass feedstock: current options and prospects for trait improvement using emerging genetic, genomic, and systems biology toolkits [J].
Feltus, Frank Alex ;
Vandenbrink, Joshua P. .
BIOTECHNOLOGY FOR BIOFUELS, 2012, 5
[5]  
FRIEDMAN HL, 1964, J POLYM SCI POL SYM, P183
[6]   Co-pyrolysis of sugarcane bagasse with petroleum residue.: Part I:: thermogravimetric analysis [J].
Garcìa-Pèrez, M ;
Chaala, A ;
Yang, J ;
Roy, C .
FUEL, 2001, 80 (09) :1245-1258
[7]  
Hemminger W, 1998, HBK THERMAL ANAL CAL, V1, P1
[8]   Thermogravimetric and reaction kinetic analysis of biomass samples from an energy plantation [J].
Mészáros, E ;
Várhegyi, G ;
Jakab, E .
ENERGY & FUELS, 2004, 18 (02) :497-507
[9]  
Segal L., 1959, TEXT RES J, P786, DOI [10.1177/004051755902901003, DOI 10.1177/004051755902901003]
[10]   The determination of activation energy from linear heating rate experiments: a comparison of the accuracy of isoconversion methods [J].
Starink, MJ .
THERMOCHIMICA ACTA, 2003, 404 (1-2) :163-176