Applications of deep learning in jet quenching

被引:1
作者
Du Yi-Lun [1 ,2 ,3 ]
Pablos, Daniel [4 ]
Tywoniuk, Konrad [1 ]
机构
[1] Univ Bergen, Dept Phys & Technol, N-5020 Bergen, Norway
[2] Univ Oslo, Dept Phys, N-0371 Oslo, Norway
[3] Shandong Inst Adv Technol, Jinan 250100, Peoples R China
[4] Ist Nazl Fis Nucl, Sez Torino, I-10125 Turin, Italy
关键词
deep learning; jet quenching; jet tagging; jet reconstruction; heavy ion collisions; PB COLLISIONS;
D O I
10.1360/SSPMA-2022-0046
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Deep learning techniques have broad applications in studying jet quenching phenomena. This paper reviews the works in recent years from several scholars employing di fferent data representations of jet samples and architectures of neural network in terms of reconstructing the momentum of jets in a hot and dense QCD medium, distinguishing the vacuum jets and medium jets, and, in particular, identifying the energy loss of jets as well as distinguishing quark- and gluon-initiated jets in a QCD medium. In the study of jet energy loss prediction, we demonstrate that deep learning techniques can identify the degree of energy loss of high-energy jets traversing hot QCD matter on a jet-by-jet basis and show that our method advances the jet tomographic study of hot QCD matter. In the study of distinguishing quark-jets and gluon-jets in the medium, we find that the classification accuracy gradually decreases as the jets lose energy. Lastly, we discuss the medium modifications of quark and gluon jet substructures in a perspective view.
引用
收藏
页数:16
相关论文
共 77 条
[1]   Higher Harmonic Anisotropic Flow Measurements of Charged Particles in Pb-Pb Collisions at √sNN=2.76 TeV [J].
Aamodt, K. ;
Abelev, B. ;
Abrahantes Quintana, A. ;
Adamova, D. ;
Adare, A. M. ;
Aggarwal, M. M. ;
Rinella, G. Aglieri ;
Agocs, A. G. ;
Agostinelli, A. ;
Aguilar Salazar, S. ;
Ahammed, Z. ;
Ahmad, N. ;
Masoodi, A. Ahmad ;
Ahn, S. U. ;
Akindinov, A. ;
Aleksandrov, D. ;
Alessandro, B. ;
Alfaro Molina, R. ;
Alici, A. ;
Alkin, A. ;
Almaraz Avina, E. ;
Alt, T. ;
Altini, V. ;
Altsybeev, I. ;
Andrei, C. ;
Andronic, A. ;
Anguelov, V. ;
Anson, C. ;
Anticic, T. ;
Antinori, F. ;
Antonioli, P. ;
Aphecetche, L. ;
Appelshaeuser, H. ;
Arbor, N. ;
Arcelli, S. ;
Arend, A. ;
Armesto, N. ;
Arnaldi, R. ;
Aronsson, T. ;
Arsene, I. C. ;
Arslandok, M. ;
Asryan, A. ;
Augustinus, A. ;
Averbeck, R. ;
Awes, T. C. ;
Aysto, J. ;
Azmi, M. D. ;
Bach, M. ;
Badala, A. ;
Baek, Y. W. .
PHYSICAL REVIEW LETTERS, 2011, 107 (03)
[2]  
Aamodt K, 2010, PHYS REV LETT, V105
[3]   First measurement of jet mass in Pb-Pb and p-Pb collisions at the LHC [J].
Acharya, S. ;
Adamova, D. ;
Aggarwal, M. M. ;
Rinella, G. Aglieri ;
Agnello, M. ;
Agrawal, N. ;
Ahammed, Z. ;
Ahmad, N. ;
Ahn, S. U. ;
Aiola, S. ;
Akindinov, A. ;
Alam, S. N. ;
Albuquerque, D. S. D. ;
Aleksandrov, D. ;
Alessandro, B. ;
Alexandre, D. ;
Molina, R. Alfaro ;
Alici, A. ;
Alkin, A. ;
Alme, J. ;
Alt, T. ;
Altsybeev, I. ;
Prado, C. Alves Garcia ;
An, M. ;
Andrei, C. ;
Andrews, H. A. ;
Andronic, A. ;
Anguelov, V. ;
Anson, C. ;
Anticic, T. ;
Antinori, F. ;
Antonioli, P. ;
Anwar, R. ;
Aphecetche, L. ;
Appelshauser, H. ;
Arcelli, S. ;
Arnaldi, R. ;
Arnold, O. W. ;
Arsene, I. C. ;
Arslandok, M. ;
Audurier, B. ;
Augustinus, A. ;
Averbeck, R. ;
Azmi, M. D. ;
Badala, A. ;
Baek, Y. W. ;
Bagnasco, S. ;
Bailhache, R. ;
Bala, R. ;
Baldisseri, A. .
PHYSICS LETTERS B, 2018, 776 :249-264
[4]   Elliptic flow in Au plus Au collisions at √sNN=130 GeV [J].
Ackermann, KH ;
Adams, N ;
Adler, C ;
Ahammed, Z ;
Ahmad, S ;
Allgower, C ;
Amsbaugh, J ;
Anderson, M ;
Anderssen, E ;
Arnesen, H ;
Arnold, L ;
Averichev, GS ;
Baldwin, A ;
Balewski, J ;
Barannikova, O ;
Barnby, LS ;
Baudot, J ;
Beddo, M ;
Bekele, S ;
Belaga, VV ;
Bellwied, R ;
Bennett, S ;
Bercovitz, J ;
Berger, J ;
Betts, W ;
Bichsel, H ;
Bieser, F ;
Bland, LC ;
Bloomer, M ;
Blyth, CO ;
Boehm, J ;
Bonner, BE ;
Bonnet, D ;
Bossingham, R ;
Botlo, M ;
Boucham, A ;
Bouillo, N ;
Bouvier, S ;
Bradley, K ;
Brady, FP ;
Braithwaite, ES ;
Braithwaite, W ;
Brandin, A ;
Brown, RL ;
Brugalette, G ;
Byrd, C ;
Caines, H ;
Sánchez, MCD ;
Cardenas, A ;
Carr, L .
PHYSICAL REVIEW LETTERS, 2001, 86 (03) :402-407
[5]  
Adcox K, 2002, PHYS REV LETT, V88, DOI [10.1103/PhysRevLett.88.022301, 10.1103/PhysRevLett.88.242301]
[6]  
Adler C, 2002, PHYS REV LETT, V89, DOI [10.1103/PhysRevLett.89.132301, 10.1103/PhysRevLett.89.202301]
[7]   Playing tag with ANN: boosted top identification with pattern recognition [J].
Almeida, Leandro G. ;
Backovic, Mihailo ;
Cliche, Mathieu ;
Lee, Seung J. ;
Perelstein, Maxim .
JOURNAL OF HIGH ENERGY PHYSICS, 2015, (07)
[8]  
[Anonymous], 2018, JHEP, V10, P161
[9]  
[Anonymous], 2014, arXiv:1311.0633 INSPIRE
[10]   Deep Learning for the classification of quenched jets [J].
Apolinario, L. ;
Castro, N. F. ;
Romao, M. Crispim ;
Milhano, J. G. ;
Pedro, R. ;
Peres, F. C. R. .
JOURNAL OF HIGH ENERGY PHYSICS, 2021, 2021 (11)