Hydrogen Evolution Reaction at Anion Vacancy of Two-Dimensional Transition-Metal Dichalcogenides: Ab Initio Computational Screening

被引:112
|
作者
Lee, Joohee [1 ,2 ]
Kang, Sungwoo [1 ,2 ]
Yim, Kanghoon [1 ,2 ,4 ]
Kim, Kye Yeop [1 ,2 ,5 ]
Jang, Ho Won [1 ,2 ]
Kang, Youngho [3 ]
Han, Seungwu [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Adv Mat, Seoul 08826, South Korea
[3] Korea Inst Mat Sci, Mat Modeling & Characterizat Dept, Chang Won 51508, South Korea
[4] Korea Inst Energy Res, 152 Gajeong Ro, Daejeon 34129, South Korea
[5] LGE Yangjae R&D Campus,38 Baumoe Ro, Seoul 06763, South Korea
来源
关键词
CATALYTIC-ACTIVITY; MOS2; WS2; MX2; ELECTROCATALYST; NANOSHEETS; EFFICIENT; SUPPORT; PHASE; SE;
D O I
10.1021/acs.jpclett.8b00712
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The catalytic activity for the hydrogen evolution reaction (HER) at the anion vacancy of 40 2D transition-metal dichalcogenides (TMDs) is investigated using the hydrogen adsorption free energy (AGH) as the activity descriptor. While vacancy-free basal planes are mostly inactive, anion vacancy makes the hydrogen bonding stronger than clean basal planes, promoting the HER performance of many TMDs. We find that ZrSe2 and ZrTe2 have similar AGH as Pt, the best HER catalyst, at low vacancy density. AGH depends significantly on the vacancy density, which could be exploited as a tuning parameter. At proper vacancy densities, MoS2, MoSe2, MoTe2, ReSe2, ReTe2, WSe2, IrTe2, and HfTe2 are expected to show the optimal HER activity. The detailed analysis of electronic structure and the multiple linear regression results identifies the vacancy formation energy and band-edge positions as key parameters correlating with AGH at anion vacancy of TMDs.
引用
收藏
页码:2049 / 2055
页数:13
相关论文
共 50 条
  • [41] Roles of Two-Dimensional Transition Metal Dichalcogenides as Cocatalysts in Photocatalytic Hydrogen Evolution and Environmental Remediation
    Peng, Wenchao
    Li, Yang
    Zhang, Fengbao
    Zhang, Guoliang
    Fan, Xiaobin
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (16) : 4611 - 4626
  • [42] High-Throughput Computational Screening of Electrical and Phonon Properties of Two-Dimensional Transition Metal Dichalcogenides
    Izaak Williamson
    Andres Correa Hernandez
    Winnie Wong-Ng
    Lan Li
    JOM, 2016, 68 : 2666 - 2672
  • [43] High-Throughput Computational Screening of Electrical and Phonon Properties of Two-Dimensional Transition Metal Dichalcogenides
    Williamson, Izaak
    Hernandez, Andres Correa
    Wong-Ng, Winnie
    Li, Lan
    JOM, 2016, 68 (10) : 2666 - 2672
  • [44] Two-dimensional Transition Metal Dichalcogenides for Electrocatalytic Oxygen Reduction Reaction
    Sun Lian
    Gu Quanchao
    Yang Yaping
    Wang Honglei
    Yu Jinshan
    Zhou Xingui
    JOURNAL OF INORGANIC MATERIALS, 2022, 37 (07) : 697 - 709
  • [45] Strain-Assisted Phase Transformation in Two-Dimensional Transition-Metal Dichalcogenides
    Sabbaghi, Soroush
    Hosseinian, Ehsan
    Bazargan, Vahid
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (17) : 22676 - 22688
  • [47] Wigner crystals in two-dimensional transition-metal dichalcogenides: Spin physics and readout
    Knoerzer, J.
    Schuetz, M. J. A.
    Giedke, G.
    Wild, D. S.
    De Greve, K.
    Schmidt, R.
    Lukin, M. D.
    Cirac, J., I
    PHYSICAL REVIEW B, 2020, 101 (12)
  • [48] Two-dimensional noble transition-metal dichalcogenides for nanophotonics and optoelectronics: Status and prospects
    Wang, Yingwei
    Zhou, Li
    Zhong, Mianzeng
    Liu, Yanping
    Xiao, Si
    He, Jun
    NANO RESEARCH, 2022, 15 (04) : 3675 - 3694
  • [49] Band structure and giant Stark effect in two-dimensional transition-metal dichalcogenides
    Javaid, M.
    Russo, Salvy P.
    Kalantar-Zadeh, K.
    Greentree, Andrew D.
    Drumm, Daniel W.
    ELECTRONIC STRUCTURE, 2019, 1 (01):
  • [50] In-Plane and Interfacial Thermal Conduction of Two-Dimensional Transition-Metal Dichalcogenides
    Yu, Yifei
    Minhaj, Tamzid
    Huang, Lujun
    Yu, Yiling
    Cao, Linyou
    PHYSICAL REVIEW APPLIED, 2020, 13 (03)