Hydrogen Evolution Reaction at Anion Vacancy of Two-Dimensional Transition-Metal Dichalcogenides: Ab Initio Computational Screening

被引:117
作者
Lee, Joohee [1 ,2 ]
Kang, Sungwoo [1 ,2 ]
Yim, Kanghoon [1 ,2 ,4 ]
Kim, Kye Yeop [1 ,2 ,5 ]
Jang, Ho Won [1 ,2 ]
Kang, Youngho [3 ]
Han, Seungwu [1 ,2 ]
机构
[1] Seoul Natl Univ, Dept Mat Sci & Engn, Seoul 08826, South Korea
[2] Seoul Natl Univ, Res Inst Adv Mat, Seoul 08826, South Korea
[3] Korea Inst Mat Sci, Mat Modeling & Characterizat Dept, Chang Won 51508, South Korea
[4] Korea Inst Energy Res, 152 Gajeong Ro, Daejeon 34129, South Korea
[5] LGE Yangjae R&D Campus,38 Baumoe Ro, Seoul 06763, South Korea
关键词
CATALYTIC-ACTIVITY; MOS2; WS2; MX2; ELECTROCATALYST; NANOSHEETS; EFFICIENT; SUPPORT; PHASE; SE;
D O I
10.1021/acs.jpclett.8b00712
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The catalytic activity for the hydrogen evolution reaction (HER) at the anion vacancy of 40 2D transition-metal dichalcogenides (TMDs) is investigated using the hydrogen adsorption free energy (AGH) as the activity descriptor. While vacancy-free basal planes are mostly inactive, anion vacancy makes the hydrogen bonding stronger than clean basal planes, promoting the HER performance of many TMDs. We find that ZrSe2 and ZrTe2 have similar AGH as Pt, the best HER catalyst, at low vacancy density. AGH depends significantly on the vacancy density, which could be exploited as a tuning parameter. At proper vacancy densities, MoS2, MoSe2, MoTe2, ReSe2, ReTe2, WSe2, IrTe2, and HfTe2 are expected to show the optimal HER activity. The detailed analysis of electronic structure and the multiple linear regression results identifies the vacancy formation energy and band-edge positions as key parameters correlating with AGH at anion vacancy of TMDs.
引用
收藏
页码:2049 / 2055
页数:13
相关论文
共 49 条
[1]   2H → 1T phase transition and hydrogen evolution activity of MoS2, MoSe2, WS2 and WSe2 strongly depends on the MX2 composition [J].
Ambrosi, Adriano ;
Sofer, Zdenek ;
Pumera, Martin .
CHEMICAL COMMUNICATIONS, 2015, 51 (40) :8450-8453
[2]   Two-Dimensional Transition Metal Dichalcogenide Nanomaterials for Solar Water Splitting [J].
Andoshe, Dinsefa M. ;
Jeon, Jong-Myeong ;
Kim, Soo Young ;
Jang, Ho Won .
ELECTRONIC MATERIALS LETTERS, 2015, 11 (03) :323-335
[3]   Stable, Single-Layer MX2 Transition-Metal Oxides and Dichalcogenides in a Honeycomb-Like Structure [J].
Ataca, C. ;
Sahin, H. ;
Ciraci, S. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (16) :8983-8999
[4]  
Atkins P W., 1998, Physical Chemistry, V4
[5]   New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design [J].
Belsky, A ;
Hellenbrandt, M ;
Karen, VL ;
Luksch, P .
ACTA CRYSTALLOGRAPHICA SECTION B-STRUCTURAL SCIENCE, 2002, 58 :364-369
[6]   Catalyzing the Hydrogen Evolution Reaction (HER) with Molybdenum Sulfide Nanomaterials [J].
Benck, Jesse D. ;
Hellstern, Thomas R. ;
Kibsgaard, Jakob ;
Chakthranont, Pongkarn ;
Jaramillo, Thomas F. .
ACS CATALYSIS, 2014, 4 (11) :3957-3971
[7]   Dipole correction for surface supercell calculations [J].
Bengtsson, L .
PHYSICAL REVIEW B, 1999, 59 (19) :12301-12304
[8]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[9]   Origin of hydrogen evolution activity on MS2 (M = Mo or Nb) monolayers [J].
Chen, Xiaobo ;
Gu, Yu ;
Tao, Guohua ;
Pei, Yanli ;
Wang, Guangjin ;
Cui, Ni .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (37) :18898-18905
[10]   Ultrathin WS2 Nanoflakes as a High-Performance Electrocatalyst for the Hydrogen Evolution Reaction [J].
Cheng, Liang ;
Huang, Wenjing ;
Gong, Qiufang ;
Liu, Changhai ;
Liu, Zhuang ;
Li, Yanguang ;
Dai, Hongjie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (30) :7860-7863