Detection of IoT Botnet Based on Deep Learning

被引:0
作者
Liu, Junyi [1 ]
Liu, Shiyue [1 ]
Zhang, Sihua [1 ]
机构
[1] Beijing Inst Technol, Sch Automat, Beijing 100081, Peoples R China
来源
PROCEEDINGS OF THE 38TH CHINESE CONTROL CONFERENCE (CCC) | 2019年
关键词
IoT botnet; attack detection; multivariate correlation analysis; deep learning; convolutional neural network;
D O I
10.23919/chicc.2019.8866088
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper. we propose a deep learning based approach for IoT botnet detection. We use the damped incremental statistics to extract basic traffic features of IoT devices and apply the Z-Score method to normalize the features. After that, the triangle area maps (TAM) based multivariate correlation analysis (MCA) algorithm is employed to generate dataset. Then we design a convolutional neural network (CNN) to learn the dataset and utilize the trained CNN to detect the traffic. The final experiments show that our approach can distinguish benign traffic and different kinds of attack traffic effectively and reaches the accuracy of 99.57%.
引用
收藏
页码:8381 / 8385
页数:5
相关论文
共 12 条
[1]  
[Anonymous], 2018, Inf. Technol.
[2]  
[寇广 Kou Guang], 2016, [通信学报, Journal on Communications], V37, P114
[3]   ImageNet Classification with Deep Convolutional Neural Networks [J].
Krizhevsky, Alex ;
Sutskever, Ilya ;
Hinton, Geoffrey E. .
COMMUNICATIONS OF THE ACM, 2017, 60 (06) :84-90
[4]  
LeCun Y., 1998, Handbook Brain Theory Neural Netw., DOI 10.5555/303568.303704
[5]  
Livadas C, 2006, CONF LOCAL COMPUT NE, P967
[6]   N-BaIoT-Network-Based Detection of IoT Botnet Attacks Using Deep Autoencoders [J].
Meidan, Yair ;
Bohadana, Michael ;
Mathov, Yael ;
Mirsky, Yisroel ;
Shabtai, Asaf ;
Breitenbacher, Dominik ;
Elovici, Yuval .
IEEE PERVASIVE COMPUTING, 2018, 17 (03) :12-22
[7]   Kitsune: An Ensemble of Autoencoders for Online Network Intrusion Detection [J].
Mirsky, Yisroel ;
Doitshman, Tomer ;
Elovici, Yuval ;
Shabtai, Asaf .
25TH ANNUAL NETWORK AND DISTRIBUTED SYSTEM SECURITY SYMPOSIUM (NDSS 2018), 2018,
[8]  
Simonyan K, 2015, Arxiv, DOI arXiv:1409.1556
[9]  
Srivastava N, 2014, J MACH LEARN RES, V15, P1929
[10]   Detection of Denial-of-Service Attacks Based on Computer Vision Techniques [J].
Tan, Zhiyuan ;
Jamdagni, Aruna ;
He, Xiangjian ;
Nanda, Priyadarsi ;
Liu, Ren Ping ;
Hu, Jiankun .
IEEE TRANSACTIONS ON COMPUTERS, 2015, 64 (09) :2519-2533