An integrable semi-discrete Degasperis-Procesi equation

被引:7
作者
Feng, Bao-Feng [1 ]
Maruno, Ken-ichi [2 ]
Ohta, Yasuhiro [3 ]
机构
[1] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
[2] Waseda Univ, Dept Appl Math, Tokyo 1698050, Japan
[3] Kobe Univ, Dept Math, Kobe, Hyogo 6578501, Japan
基金
中国国家自然科学基金;
关键词
CKP hierarchy; tau-functions; bilinear equations; semi-discrete Degasperis-Procesi equation; SHALLOW-WATER EQUATION; PEAKON SOLUTIONS; SOLITON SOLUTION; WAVES;
D O I
10.1088/1361-6544/aa67fc
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on our previous work on the Degasperis-Procesi equation (Feng et al J. Phys. A: Math. Theor. 46 045205) and the integrable semi-discrete analogue of its short wave limit (Feng et al J. Phys. A: Math. Theor. 48 135203), we derive an integrable semi-discrete Degasperis-Procesi equation by Hirota's bilinear method. Furthermore, N-soliton solution to the semi-discrete Degasperis-Procesi equation is constructed. It is shown that both the proposed semi-discrete Degasperis-Procesi equation, and its N-soliton solution converge to ones of the original Degasperis-Procesi equation in the continuum limit.
引用
收藏
页码:2246 / 2267
页数:22
相关论文
共 50 条
  • [21] Colliding peakons and the formation of shocks in the Degasperis-Procesi equation
    Szmigielski, Jacek
    Zhou, Lingjun
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 469 (2158):
  • [22] Global well-posedness for the Cauchy problem of the viscous Degasperis-Procesi equation
    Ai, Xiaolian
    Gui, Guilong
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 361 (02) : 457 - 465
  • [23] Control for the Traveling Wave Solution to the Degasperis-Procesi Equation
    Zong Xiju
    Zhang Yong
    Cheng Xingong
    [J]. 2011 30TH CHINESE CONTROL CONFERENCE (CCC), 2011, : 963 - 967
  • [24] Formation and Dynamics of Shock Waves in the Degasperis-Procesi Equation
    H. Lundmark
    [J]. Journal of Nonlinear Science, 2007, 17 : 169 - 198
  • [25] On the integrability of Degasperis-Procesi equation: Control of the Sobolev norms and Birkhoff resonances
    Feola, Roberto
    Giuliani, Filippo
    Pasquali, Stefano
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (06) : 3390 - 3437
  • [26] A dispersively accurate compact finite difference method for the Degasperis-Procesi equation
    Yu, C. H.
    Sheu, Tony W. H.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 236 : 493 - 512
  • [27] On traveling waves of the quadratic-cubic Degasperis-Procesi equation
    Han, Xuanxuan
    Yang, Shaojie
    [J]. MONATSHEFTE FUR MATHEMATIK, 2022, 199 (02): : 259 - 274
  • [28] Non-uniform dependence on initial data for the generalized Degasperis-Procesi equation on the line
    Fu, Yanggeng
    Yu, Zanping
    Shen, Jianhe
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2016, 27 (03)
  • [29] Optimal control of the viscous weakly dispersive Degasperis-Procesi equation
    Shen, Chunyu
    Gao, Anna
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 72 (02) : 933 - 945
  • [30] Spectral stability of smooth solitary waves for the Degasperis-Procesi equation
    Li, Ji
    Liu, Yue
    Wu, Qiliang
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 142 : 298 - 314