共 50 条
An integrable semi-discrete Degasperis-Procesi equation
被引:7
|作者:
Feng, Bao-Feng
[1
]
Maruno, Ken-ichi
[2
]
Ohta, Yasuhiro
[3
]
机构:
[1] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
[2] Waseda Univ, Dept Appl Math, Tokyo 1698050, Japan
[3] Kobe Univ, Dept Math, Kobe, Hyogo 6578501, Japan
基金:
中国国家自然科学基金;
关键词:
CKP hierarchy;
tau-functions;
bilinear equations;
semi-discrete Degasperis-Procesi equation;
SHALLOW-WATER EQUATION;
PEAKON SOLUTIONS;
SOLITON SOLUTION;
WAVES;
D O I:
10.1088/1361-6544/aa67fc
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
Based on our previous work on the Degasperis-Procesi equation (Feng et al J. Phys. A: Math. Theor. 46 045205) and the integrable semi-discrete analogue of its short wave limit (Feng et al J. Phys. A: Math. Theor. 48 135203), we derive an integrable semi-discrete Degasperis-Procesi equation by Hirota's bilinear method. Furthermore, N-soliton solution to the semi-discrete Degasperis-Procesi equation is constructed. It is shown that both the proposed semi-discrete Degasperis-Procesi equation, and its N-soliton solution converge to ones of the original Degasperis-Procesi equation in the continuum limit.
引用
收藏
页码:2246 / 2267
页数:22
相关论文