SOME RESULTS OF THE KA-APPROXIMATION PROPERTY FOR BANACH SPACES

被引:5
作者
Kim, Ju Myung [1 ]
机构
[1] Sejong Univ, Dept Math, Seoul 05006, South Korea
关键词
P-COMPACT OPERATORS; IDEAL; SUBSPACES; ADJOINTS;
D O I
10.1017/S0017089518000356
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a Banach operator ideal A, we investigate the approximation property related to the ideal of A-compact operators, K-A-AP. We prove that a Banach space X has the K-A-AP if and only if there exists lambda >= 1 such that for every Banach space Y and every R is an element of K-A(Y, X), R is an element of <({SR : S is an element of F(X, X), vertical bar vertical bar SR vertical bar vertical bar K-A <= lambda vertical bar vertical bar R vertical bar vertical bar K-A})over bar>(tau c). For a surjective, maximal and right-accessible Banach operator ideal A, we prove that a Banach space X has the K-(Aadj)dual-AP if the dual space of X has the K-A-AP.
引用
收藏
页码:545 / 555
页数:11
相关论文
共 25 条
[1]  
[Anonymous], 2002, SPRINGER MONOGRAPHS
[2]   ON A-COMPACT OPERATORS, GENERALIZED ENTROPY NUMBERS AND ENTROPY IDEALS [J].
CARL, B ;
STEPHANI, I .
MATHEMATISCHE NACHRICHTEN, 1984, 119 :77-95
[3]   The dual space of (L(X,Y),τp) and the p-approximation property [J].
Choi, Yun Sung ;
Kim, Ju Myung .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 259 (09) :2437-2454
[4]  
Defant A, 1993, TENSOR NORMS OPERATO
[5]   Density of finite rank operators in the Banach space of p-compact operators [J].
Delgado, J. M. ;
Pineiro, C. ;
Serrano, E. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2010, 370 (02) :498-505
[6]   Operators whose adjoints are quasi p-nuclear [J].
Delgado, J. M. ;
Pineiro, C. ;
Serrano, E. .
STUDIA MATHEMATICA, 2010, 197 (03) :291-304
[7]   The p-approximation property in terms of density of finite rank operators [J].
Delgado, J. M. ;
Oja, E. ;
Pineiro, C. ;
Serrano, E. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 354 (01) :159-164
[8]   BANACH IDEALS OF P-COMPACT OPERATORS [J].
FOURIE, J ;
SWART, J .
MANUSCRIPTA MATHEMATICA, 1979, 26 (04) :349-362
[9]   TENSOR-PRODUCTS AND BANACH IDEALS OF P-COMPACT OPERATORS [J].
FOURIE, JH ;
SWART, J .
MANUSCRIPTA MATHEMATICA, 1981, 35 (03) :343-351
[10]   The ideal of p-compact operators: a tensor product approach [J].
Galicer, Daniel ;
Lassalle, Silvia ;
Turco, Pablo .
STUDIA MATHEMATICA, 2012, 211 (03) :269-286