SOME RESULTS OF THE KA-APPROXIMATION PROPERTY FOR BANACH SPACES

被引:5
|
作者
Kim, Ju Myung [1 ]
机构
[1] Sejong Univ, Dept Math, Seoul 05006, South Korea
关键词
P-COMPACT OPERATORS; IDEAL; SUBSPACES; ADJOINTS;
D O I
10.1017/S0017089518000356
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a Banach operator ideal A, we investigate the approximation property related to the ideal of A-compact operators, K-A-AP. We prove that a Banach space X has the K-A-AP if and only if there exists lambda >= 1 such that for every Banach space Y and every R is an element of K-A(Y, X), R is an element of <({SR : S is an element of F(X, X), vertical bar vertical bar SR vertical bar vertical bar K-A <= lambda vertical bar vertical bar R vertical bar vertical bar K-A})over bar>(tau c). For a surjective, maximal and right-accessible Banach operator ideal A, we prove that a Banach space X has the K-(Aadj)dual-AP if the dual space of X has the K-A-AP.
引用
收藏
页码:545 / 555
页数:11
相关论文
共 22 条