Improvement of pulmonary perfusion and blood oxygenation and prevention of acute lung injury (ALI) may rely on ventilation strategy. We hypothesized that application of a combined surfactant, inhaled nitric oxide (iNO), and pressure support ventilation (PSV) should more effectively protect the lungs from injury. Anesthetized and intubated adult rabbits weighing 2.8 +/- 0.3 kg were allowed to breathe room air while receiving oleic acid intravenously (60 mu l/kg). Within 90 min this caused a reduction of Pa-O2 from 94 +/- 7 to 48 +/- 3 mm Hg and dynamic lung compliance (Cdyn) from 1.59 +/- 0.22 to 0.85 +/- 0.10 ml/cm H2O/kg (both p < 0.01), and increase of intrapulmonary shunting ((Q) over dot s/(Q) over dot T) from 9.4 +/- 1.2 to 27 +/- 5% (p < 0.05). PSV was subsequently applied with 3 cm H2O of continuous positive airway pressure and FIO2 of 0.3, and the animals were randomly allocated to four groups, receiving: (1) PSV only (Control, n = 10); (2) iNO at 20 ppm (NO, n = 9); (3) surfactant phospholipids at 100 mg/kg (Surf, n = 8); and (4) surfactant at 100 mg/kg and iNO at 20 ppm (SNO, n = 8). PSV level was varied to maintain a tidal volume of 8 to 10 ml/kg for another 12 h or until early animal death. Five animals in the SNO, three each in the NO and Surf group, and one in the Control group survived 12 h (SNO versus Control, p < 0.05). The NO, Surf, and SNO groups had significantly improved mean Pa-O2 (> 70 mm Hg, p < 0.05), and reduced (Q) over dot s/(Q) over dot T (15, 19, and 17%, respectively, p < 0.05) at 6 and 12 h, but not in the Control group. The SNO group had the highest values of Cdyn at 12 h, alveolar aeration and disaturated phosphatidylcholine-to-total protein ratio in bronchoalveolar lavage fluid, and the lowest wet-to-dry lung weight ratio and lung injury score (p < 0.05). The results indicate that early alleviation of ALI by surfactant, iNO, and PSV is due to synergistic effects, and only PSV in this model had limited effects.