EVOLVE: Towards Converging Big-Data, High-Performance and Cloud-Computing Worlds

被引:0
|
作者
Tzenetopoulos, Achilleas [1 ]
Masouros, Dimosthenis [1 ]
Koliogeorgi, Konstantina [1 ]
Xydis, Sotirios [1 ,2 ]
Soudris, Dimitrios [1 ]
Chazapis, Antony [3 ]
Kozanitis, Christos [3 ]
Bilas, Angelos [3 ]
Pinto, Christian [4 ]
Huy-Nam Nguyen [5 ]
Louloudakis, Stelios [6 ]
Gardikis, Georgios [7 ]
Vamvakas, George [7 ]
Aubrun, Michelle [8 ]
Symeonidou, Christy [9 ]
Spitadakis, Vassilis [9 ]
Xylogiannopoulos, Konstantinos [10 ]
Peischl, Bernhard [10 ]
Kalayci, Tahir Emre [11 ]
Stocker, Alexander [11 ]
Acquaviva, Jean-Thomas [12 ]
机构
[1] Inst Commun & Comp Syst ICCS, Athens, Greece
[2] Harokopio Univ Athens HUA, Dept Informat & Telemat DIT, Athens, Greece
[3] FORTH, Inst Comp Sci, Iraklion, Greece
[4] IBM Res Europe, Dublin, Ireland
[5] ATOS Bull, Paris, France
[6] Sunlight Io, Iraklion, Greece
[7] Space Hellas SA, Athens, Greece
[8] Thales Alenia Space, Toulouse, France
[9] NEUROCOM Luxembourg, Luxembourg, Luxembourg
[10] AVL List GmbH, Graz, Austria
[11] Virtual Vehicle Res GmbH, Graz, Austria
[12] DataDirect Networks, Paris, France
来源
PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022) | 2022年
基金
欧盟地平线“2020”;
关键词
HPC; Cloud-computing; Big-Data; computing platform; accelerators; interference; resource orchestration;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
EVOLVE is a pan European Innovation Action that aims to fully-integrate High-Performance-Computing (HPC) hardware with state-of-the-art software technologies under a unique testbed, that enables the convergence of HPC, Cloud and Big-Data worlds and increases our ability to extract value from massive and demanding datasets. EVOLVE's advanced compute platform combines HPC-enabled capabilities, with transparent deployment in high abstraction level, and a versatile Big-Data processing stack for end-to-end workflows. Hence, domain experts have the potential to improve substantially the efficiency of existing services or introduce new models in the respective domains, e.g., automotive services, bus transportation, maritime surveillance and others. In this paper, we describe EVOLVE's testbed, and evaluate the performance of the integrated pilots from different domains.
引用
收藏
页码:975 / 980
页数:6
相关论文
共 50 条
  • [41] Data Analysis and Visualization in High-Performance Computing
    Szczepariski, Amy F.
    Huang, Jian
    Baer, Troy
    Mack, Yashema C.
    Ahern, Sean
    COMPUTER, 2013, 46 (05) : 84 - 92
  • [42] Big Data solutions on a small scale: Evaluating accessible high-performance computing for social research
    Murthy, Dhiraj
    Bowman, Sawyer A.
    BIG DATA & SOCIETY, 2014, 1 (02):
  • [43] Parallel computing in bioinformatics: a view from high-performance, heterogeneous, and cloud computing
    Vega-Rodriguez, Miguel A.
    Santander-Jimenez, Sergio
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (07): : 3369 - 3373
  • [44] Parallel computing in bioinformatics: a view from high-performance, heterogeneous, and cloud computing
    Miguel A. Vega-Rodríguez
    Sergio Santander-Jiménez
    The Journal of Supercomputing, 2019, 75 : 3369 - 3373
  • [45] Integrating big data and cloud computing into the existing system and performance impact: A case study in manufacturing
    Saraswat, Jeetendra Kumar
    Choudhari, Sanjay
    TECHNOLOGICAL FORECASTING AND SOCIAL CHANGE, 2025, 210
  • [46] Smart Job Scheduling for High-Performance Cloud Computing Services
    Muhtaroglu, N.
    Ari, I.
    PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON PARALLEL, DISTRIBUTED, GRID AND CLOUD COMPUTING FOR ENGINEERING, 2011, 95
  • [47] RAPPORT: running scientific high-performance computing applications on the cloud
    Cohen, Jeremy
    Filippis, Ioannis
    Woodbridge, Mark
    Bauer, Daniela
    Hong, Neil Chue
    Jackson, Mike
    Butcher, Sarah
    Colling, David
    Darlington, John
    Fuchs, Brian
    Harvey, Matt
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2013, 371 (1983):
  • [48] Payload fragmentation framework for high-performance computing in cloud environment
    Vivek, V.
    Srinivasan, R.
    Blessing, R. Elijah
    Dhanasekaran, R.
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (05): : 2789 - 2804
  • [49] PySpark-Based Optimization of Microwave Image Reconstruction Algorithm for Head Imaging Big Data on High-Performance Computing and Google Cloud Platform
    Ullah, Rahmat
    Arslan, Tughrul
    APPLIED SCIENCES-BASEL, 2020, 10 (10):
  • [50] Payload fragmentation framework for high-performance computing in cloud environment
    V. Vivek
    R. Srinivasan
    R. Elijah Blessing
    R. Dhanasekaran
    The Journal of Supercomputing, 2019, 75 : 2789 - 2804