EVOLVE: Towards Converging Big-Data, High-Performance and Cloud-Computing Worlds

被引:0
|
作者
Tzenetopoulos, Achilleas [1 ]
Masouros, Dimosthenis [1 ]
Koliogeorgi, Konstantina [1 ]
Xydis, Sotirios [1 ,2 ]
Soudris, Dimitrios [1 ]
Chazapis, Antony [3 ]
Kozanitis, Christos [3 ]
Bilas, Angelos [3 ]
Pinto, Christian [4 ]
Huy-Nam Nguyen [5 ]
Louloudakis, Stelios [6 ]
Gardikis, Georgios [7 ]
Vamvakas, George [7 ]
Aubrun, Michelle [8 ]
Symeonidou, Christy [9 ]
Spitadakis, Vassilis [9 ]
Xylogiannopoulos, Konstantinos [10 ]
Peischl, Bernhard [10 ]
Kalayci, Tahir Emre [11 ]
Stocker, Alexander [11 ]
Acquaviva, Jean-Thomas [12 ]
机构
[1] Inst Commun & Comp Syst ICCS, Athens, Greece
[2] Harokopio Univ Athens HUA, Dept Informat & Telemat DIT, Athens, Greece
[3] FORTH, Inst Comp Sci, Iraklion, Greece
[4] IBM Res Europe, Dublin, Ireland
[5] ATOS Bull, Paris, France
[6] Sunlight Io, Iraklion, Greece
[7] Space Hellas SA, Athens, Greece
[8] Thales Alenia Space, Toulouse, France
[9] NEUROCOM Luxembourg, Luxembourg, Luxembourg
[10] AVL List GmbH, Graz, Austria
[11] Virtual Vehicle Res GmbH, Graz, Austria
[12] DataDirect Networks, Paris, France
来源
PROCEEDINGS OF THE 2022 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2022) | 2022年
基金
欧盟地平线“2020”;
关键词
HPC; Cloud-computing; Big-Data; computing platform; accelerators; interference; resource orchestration;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
EVOLVE is a pan European Innovation Action that aims to fully-integrate High-Performance-Computing (HPC) hardware with state-of-the-art software technologies under a unique testbed, that enables the convergence of HPC, Cloud and Big-Data worlds and increases our ability to extract value from massive and demanding datasets. EVOLVE's advanced compute platform combines HPC-enabled capabilities, with transparent deployment in high abstraction level, and a versatile Big-Data processing stack for end-to-end workflows. Hence, domain experts have the potential to improve substantially the efficiency of existing services or introduce new models in the respective domains, e.g., automotive services, bus transportation, maritime surveillance and others. In this paper, we describe EVOLVE's testbed, and evaluate the performance of the integrated pilots from different domains.
引用
收藏
页码:975 / 980
页数:6
相关论文
共 50 条
  • [1] A Cloud-Computing Local Histogram Construction Algorithm for Big Image Data
    Cheng, Chung-Chih
    Cheng, Fan-Chieh
    Lin, Po-Hsiung
    Huang, Shih-Chia
    2014 IEEE INTERNATIONAL CONGRESS ON BIG DATA (BIGDATA CONGRESS), 2014, : 200 - 203
  • [2] Contributions to High-Performance Big Data Computing
    Fox, Geoffrey
    Qiu, Judy
    Crandall, David
    Von Laszewski, Gregor
    Beckstein, Oliver
    Paden, John
    Paraskevakos, Ioannis
    Jha, Shantenu
    Wang, Fusheng
    Marathe, Madhav
    Vullikanti, Anil
    Cheatham, Thomas
    FUTURE TRENDS OF HPC IN A DISRUPTIVE SCENARIO, 2019, 34 : 34 - 81
  • [3] High-performance computing strategies for seismic-imaging software on the cluster and cloud-computing environments
    Okita, Nicholas T.
    Camargo, Alexandre W.
    Ribeiro, Jose
    Coimbra, Tiago A.
    Benedicto, Caian
    Faccipieri, Jorge H.
    GEOPHYSICAL PROSPECTING, 2022, 70 (01) : 57 - 78
  • [4] Multimedia processing using deep learning technologies, high-performance computing cloud resources, and Big Data volumes
    Mahmoudi, Sidi Ahmed
    Belarbi, Mohammed Amin
    Mahmoudi, Said
    Belalem, Ghalem
    Manneback, Pierre
    CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2020, 32 (17):
  • [5] Experiences of Converging Big Data Analytics Frameworks with High Performance Computing Systems
    Cheng, Peng
    Lu, Yutong
    Du, Yunfei
    Chen, Zhiguang
    SUPERCOMPUTING FRONTIERS, SCFA 2018, 2018, 10776 : 90 - 106
  • [6] High performance solutions for big-data GWAS
    Peise, Elmar
    Fabregat-Traver, Diego
    Bientinesi, Paolo
    PARALLEL COMPUTING, 2015, 42 : 75 - 87
  • [7] Facilitating big-data management in modern business and organizations using cloud computing: a comprehensive study
    Qi, Wenhao
    Sun, Meng
    Hosseini, Seyed Reza Aghaseyed
    JOURNAL OF MANAGEMENT & ORGANIZATION, 2023, 29 (04) : 697 - 723
  • [8] Platform modelling and scheduling game with multiple intelligent cloud-computing pools for big data
    Dai, Wanyang
    MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2018, 24 (05) : 506 - 552
  • [9] pipsCloud: High performance cloud computing for remote sensing big data management and processing
    Wang, Lizhe
    Ma, Yan
    Yan, Jining
    Chang, Victor
    Zomaya, Albert Y.
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 78 : 353 - 368
  • [10] Towards a Cloud Computing Paradigm for Big Data Analysis in Smart Cities
    Massobrio, R.
    Nesmachnow, S.
    Tchernykh, A.
    Avetisyan, A.
    Radchenko, G.
    PROGRAMMING AND COMPUTER SOFTWARE, 2018, 44 (03) : 181 - 189