Nonlinear stability of phase transition steady states to a hyperbolic-parabolic system modeling vascular networks

被引:11
作者
Hong, Guangyi [1 ]
Peng, Hongyun [2 ]
Wang, Zhi-An [1 ]
Zhu, Changjiang [2 ]
机构
[1] Hong Kong Polytech Univ, Dept Appl Math, Hung Hom, Kowloon, Hong Kong, Peoples R China
[2] Guangdong Univ Technol, Sch Appl Math, Guangzhou 510006, Peoples R China
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2021年 / 103卷 / 04期
基金
中国国家自然科学基金;
关键词
35L60; 35L04; 35B40; 35Q92 (primary); ASYMPTOTIC-BEHAVIOR; CONSERVATION-LAWS; DIFFUSION WAVES; CONVERGENCE-RATES; P-SYSTEM; EXISTENCE; PROFILE;
D O I
10.1112/jlms.12415
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is concerned with the existence and stability of phase transition steady states to a quasi-linear hyperbolic-parabolic system of chemotactic aggregation, which was proposed in [Ambrosi, Bussolino and Preziosi, J. Theoret. Med. 6 (2005) 1-19; Gamba et al., Phys. Rev. Lett. 90 (2003) 118101.] to describe the coherent vascular network formation observed in vitro experiment. Considering the system in the half line R+=(0,infinity) with Dirichlet boundary conditions, we first prove the existence and uniqueness of non-constant phase transition steady states under some structure conditions on the pressure function. Then we prove that this unique phase transition steady state is nonlinearly asymptotically stable against a small perturbation. We prove our results by the method of energy estimates, the technique of a priori assumption and a weighted Hardy-type inequality.
引用
收藏
页码:1480 / 1514
页数:35
相关论文
共 27 条
[1]  
Ambrosi D., 2005, J. Theor. Med, V6, P1
[2]  
Berthelin F, 2016, COMMUN MATH SCI, V14, P147
[3]   PHASE TRANSITIONS AND BUMP SOLUTIONS OF THE KELLER-SEGEL MODEL WITH VOLUME EXCLUSION [J].
Carrillo, Jose A. ;
Chen, Xinfu ;
Wang, Qi ;
Wang, Zhian ;
Zhang, Lu .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2020, 80 (01) :232-261
[4]   Boundary spike-layer solutions of the singular Keller-Segel system: existence and stability [J].
Carrillo, Jose A. ;
Li, Jingyu ;
Wang, Zhi-An .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2021, 122 (01) :42-68
[5]  
Chandrasekhar S, 1957, INTRO STUDY STELLAR, V2
[6]   Jeans type instability for a chemotactic model of cellular aggregation [J].
Chavanis, P. H. .
EUROPEAN PHYSICAL JOURNAL B, 2006, 52 (03) :433-443
[7]   Kinetic and hydrodynamic models of chemotactic aggregation [J].
Chavanis, Pierre-Henri ;
Sire, Clement .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 384 (02) :199-222
[8]  
Choudhuri A.R., 1998, PHYS FLUIDS PLASMAS, DOI 10.1017CBO9781139171069
[9]  
Di Russo C., 2012, Rend. Mat. Appl, V32, P117
[10]   Existence and Asymptotic Behavior of Solutions to a Semilinear Hyperbolic-Parabolic Model of Chemotaxis [J].
Di Russo, Cristiana .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2016, 65 (02) :493-533