A remark on some three-point boundary value problems for the one-dimensional p-laplacian

被引:2
作者
Xiaoming, H [1 ]
Weigao, G
机构
[1] Chinese Acad Sci, Acad Math & Syst Sci, Inst Appl Math, Beijing 100080, Peoples R China
[2] Beijing Inst Technol, Dept Appl Math, Beijing 100081, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK | 2002年 / 82卷 / 10期
关键词
three-point boundary value problem; one-dimensional p-Laplacian; multiple solutions; fixed points; cone;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish existence criteria for multiple (at least three) positive solutions to the three-point boundary value problem (g(u'))' + a(t) f(u) = 0,u(0) = 0, u(eta) = u(1), when, g(v) = \v\(p-2) v, p > 1, and eta is an element of (0, 1) is prescribed. The results improve and extend earlier results due to WANG JUNYU and ZHENG DAWEI [1] by an application of the Leggett-William's fired point theorem in a cone.
引用
收藏
页码:728 / 731
页数:4
相关论文
共 7 条
[1]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[2]  
GUO D, 1988, NONL PROBL ABSTR CON
[3]   Multiple symmetric positive solutions for a second order boundary value problem [J].
Henderson, J ;
Thompson, HB .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 128 (08) :2373-2379
[4]  
Krasnoselskii M. A., 1964, Positive Solutions of Operator Equations
[5]   MULTIPLE POSITIVE FIXED-POINTS OF NON-LINEAR OPERATORS ON ORDERED BANACH-SPACES [J].
LEGGETT, RW ;
WILLIAMS, LR .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1979, 28 (04) :673-688
[6]   On the existence of positive solutions to a three-point boundary value problem for the one-dimensional p-Laplacian [J].
Wang, JY ;
Zheng, DW .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 (06) :477-479