Instability of the Li7SiPS8 Solid Electrolyte at the Lithium Metal Anode and Interphase Formation

被引:21
作者
Riegger, Luise M. [1 ,2 ]
Otto, Svenja-K [1 ,2 ]
Sadowski, Marcel [3 ]
Jovanovic, Sven [4 ]
Koetz, Olaf [1 ,2 ]
Harm, Sascha [5 ,6 ]
Balzat, Lucas G. [5 ,6 ]
Merz, Steffen [4 ]
Burkhardt, Simon [1 ,2 ]
Richter, Felix H. [1 ,2 ]
Sann, Joachim [1 ,2 ]
Eichel, Ruediger-A [4 ,7 ]
Lotsch, Bettina, V [5 ,6 ]
Granwehr, Josef [4 ]
Albe, Karsten [3 ]
Janek, Juergen [1 ,2 ]
机构
[1] Justus Liebig Univ Giessen, Inst Phys Chem, D-35392 Giessen, Germany
[2] Justus Liebig Univ Giessen, Ctr Mat Res ZfM, D-35392 Giessen, Germany
[3] Tech Univ Darmstadt, Inst Mat Sci, D-64287 Darmstadt, Germany
[4] Forschungszentrum Julich, IEK 9 Fundamental Electrochem, D-52425 Julich, Germany
[5] Max Planck Inst Solid State Res, D-70569 Stuttgart, Germany
[6] Ludwig Maximilians Univ Munchen, Dept Chem, D-81377 Munich, Germany
[7] Rhein Westfal TH Aachen, Inst Phys Chem, D-52056 Aachen, Germany
关键词
GENERALIZED GRADIENT APPROXIMATION; INITIO MOLECULAR-DYNAMICS; SOLID-STATE BATTERIES; AB-INITIO; IONIC-CONDUCTIVITY; ELECTROCHEMICAL STABILITY; INTERFACIAL REACTIVITY; CHALCOGENIDE GLASSES; NMR; SI-29;
D O I
10.1021/acs.chemmater.1c04302
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Thiophosphate solid electrolytes containing metalloid ions such as siliconor germanium show a very high lithium-ion conductivity and the potential to enable solid-state batteries (SSBs). While the lithium metal anode (LMA) is necessary to achievespecific energies competitive with liquid lithium-ion batteries (LIBs), it is also well knownthat most of the metalloid ions used in promising thiophosphate solid electrolytes arereduced in contact with an LMA. This reduction reaction and its products formed at thesolid electrolyte|LMA interface can compromise the performance of an SSB due toimpedance growth. To study the reduction of these metalloid ions and their impact moreclosely, we used the recently synthesized Li7SiPS8as a member of the tetragonalLi10GeP2S12(LGPS) family. Stripping/plating experiments and the temporal evolution of the impedance of symmetric Li|Li7SiPS8|Litransference cells show a severe increase in cell resistance. We characterize the reduction of Li7SiPS8after lithium deposition with insitu X-ray photoelectron spectroscopy, time-of-flight secondary-ion mass spectrometry, and solid-state nuclear magnetic resonancespectroscopy. The results indicate a continuous reaction without the formation of elemental silicon. For elucidating the reactionpathways, density functional theory calculations are conducted followed by ab initio molecular dynamics simulations to study theinterface evolution atfinite temperature. The resulting electronic density of states confirms that no elemental silicon is formed duringthe decomposition. Our study reveals that Li7SiPS8cannot be used in direct contact with the LMA, even though it is a promisingcandidate as both a separator and a catholyte material in SSBs
引用
收藏
页码:3659 / 3669
页数:11
相关论文
共 69 条
[1]   Nanostructured Si(i-x)Gex for Tunable Thin Film Lithium-Ion Battery Anodes [J].
Abel, Paul R. ;
Chockla, Aaron M. ;
Lin, Yong-Mao ;
Holmberg, Vincent C. ;
Harris, Justin T. ;
Korgel, Brian A. ;
Heller, Adam ;
Mullins, C. Buddie .
ACS NANO, 2013, 7 (03) :2249-2257
[2]   SYNTHESIS AND LITHIUM CONDUCTIVITIES OF LI2SIS3 AND LI4SIS4 [J].
AHN, BT ;
HUGGINS, RA .
MATERIALS RESEARCH BULLETIN, 1989, 24 (07) :889-897
[3]   In Situ Solid State 7Li NMR Observations of Lithium Metal Deposition during Overcharge in Lithium Ion Batteries [J].
Arai, J. ;
Okada, Y. ;
Sugiyama, T. ;
Izuka, M. ;
Gotoh, K. ;
Takeda, K. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (06) :A952-A958
[4]  
Beamson G., 1992, Journal of Chemical Education, DOI DOI 10.1021/ED070PA25.5
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   Li10Si0.3Sn0.7P2S12 - A low-cost and low-grain-boundary-resistance lithium superionic conductor [J].
Bron, Philipp ;
Dehnen, Stefanie ;
Roling, Bernhard .
JOURNAL OF POWER SOURCES, 2016, 329 :530-535
[7]   Li10SnP2S12: An Affordable Lithium Superionic Conductor [J].
Bron, Philipp ;
Johansson, Sebastian ;
Zick, Klaus ;
auf der Guenne, Joern Schmedt ;
Dehnen, Stefanie ;
Roling, Bernhard .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (42) :15694-15697
[8]   Exploring interfacial stability of solid-state electrolytes at the lithium-metal anode surface [J].
Camacho-Forero, Luis E. ;
Balbuena, Perla B. .
JOURNAL OF POWER SOURCES, 2018, 396 :782-790
[9]   An insight into intrinsic interfacial properties between Li metals and Li10GeP2S12 solid electrolytest [J].
Chen, Bingbing ;
Ju, Jiangwei ;
Ma, Jun ;
Zhang, Jianjun ;
Xiao, Ruijuan ;
Cui, Guanglei ;
Chen, Liquan .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (46) :31436-31442
[10]   Insights into the Electrochemical Stability and Lithium Conductivity of Li4MS4 (M = Si, Ge, and Sn) [J].
Chen, Fengjiao ;
Cheng, Songqi ;
Liu, Jian-Bo ;
Li, Shunning ;
Ouyang, Wenhong ;
Liu, Baixin .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (19) :22438-22447