Current Value of Biparametric Prostate MRI with Machine-Learning or Deep-Learning in the Detection, Grading, and Characterization of Prostate Cancer: A Systematic Review

被引:18
|
作者
Michaely, Henrik J. [1 ]
Aringhieri, Giacomo [2 ,3 ]
Cioni, Dania [2 ,3 ]
Neri, Emanuele [2 ,3 ]
机构
[1] Heidelberg Univ, Med Fac Mannheim, D-69120 Heidelberg, Germany
[2] Univ Pisa, Acad Radiol, Dept Translat Res, I-56126 Pisa, Italy
[3] SIRM Fdn, Italian Soc Med & Intervent Radiol, Via Signora 2, I-20122 Milan, Italy
关键词
prostate cancer; multiparametric prostate MRI; biparametric prostate MRI; deep-learning; radiomics; artificial intelligence; cancer detection; PIRADS; MULTI-PARAMETRIC MRI; MULTIPARAMETRIC MRI; DIAGNOSTIC-ACCURACY; CLINICALLY SIGNIFICANT; GADOLINIUM DEPOSITION; RADIOMICS SIGNATURE; BIOPSY; DISEASE; IMAGES;
D O I
10.3390/diagnostics12040799
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Prostate cancer detection with magnetic resonance imaging is based on a standardized MRI-protocol according to the PI-RADS guidelines including morphologic imaging, diffusion weighted imaging, and perfusion. To facilitate data acquisition and analysis the contrast-enhanced perfusion is often omitted resulting in a biparametric prostate MRI protocol. The intention of this review is to analyze the current value of biparametric prostate MRI in combination with methods of machine-learning and deep learning in the detection, grading, and characterization of prostate cancer; if available a direct comparison with human radiologist performance was performed. PubMed was systematically queried and 29 appropriate studies were identified and retrieved. The data show that detection of clinically significant prostate cancer and differentiation of prostate cancer from non-cancerous tissue using machine-learning and deep learning is feasible with promising results. Some techniques of machine-learning and deep-learning currently seem to be equally good as human radiologists in terms of classification of single lesion according to the PIRADS score.
引用
收藏
页数:22
相关论文
共 50 条
  • [1] Automated Classification of Significant Prostate Cancer on MRI: A Systematic Review on the Performance of Machine Learning Applications
    Castillo T., Jose M.
    Arif, Muhammad
    Niessen, Wiro J.
    Schoots, Ivo G.
    Veenland, Jifke F.
    CANCERS, 2020, 12 (06) : 1 - 13
  • [2] Machine Learning in Prostate MRI for Prostate Cancer: Current Status and Future Opportunities
    Li, Huanye
    Lee, Chau Hung
    Chia, David
    Lin, Zhiping
    Huang, Weimin
    Tan, Cher Heng
    DIAGNOSTICS, 2022, 12 (02)
  • [3] Deep learning-based artificial intelligence for prostate cancer detection at biparametric MRI
    Mehralivand, Sherif
    Yang, Dong
    Harmon, Stephanie A.
    Xu, Daguang
    Xu, Ziyue
    Roth, Holger
    Masoudi, Samira
    Kesani, Deepak
    Lay, Nathan
    Merino, Maria J.
    Wood, Bradford J.
    Pinto, Peter A.
    Choyke, Peter L.
    Turkbey, Baris
    ABDOMINAL RADIOLOGY, 2022, 47 (04) : 1425 - 1434
  • [4] Deep learning-based artificial intelligence for prostate cancer detection at biparametric MRI
    Sherif Mehralivand
    Dong Yang
    Stephanie A. Harmon
    Daguang Xu
    Ziyue Xu
    Holger Roth
    Samira Masoudi
    Deepak Kesani
    Nathan Lay
    Maria J. Merino
    Bradford J. Wood
    Peter A. Pinto
    Peter L. Choyke
    Baris Turkbey
    Abdominal Radiology, 2022, 47 : 1425 - 1434
  • [5] Machine and Deep Learning Prediction Of Prostate Cancer Aggressiveness Using Multiparametric MRI
    Bertelli, Elena
    Mercatelli, Laura
    Marzi, Chiara
    Pachetti, Eva
    Baccini, Michela
    Barucci, Andrea
    Colantonio, Sara
    Gherardini, Luca
    Lattavo, Lorenzo
    Pascali, Maria Antonietta
    Agostini, Simone
    Miele, Vittorio
    FRONTIERS IN ONCOLOGY, 2022, 11
  • [6] Deep-learning prostate cancer detection and segmentation on biparametric versus multiparametric magnetic resonance imaging: Added value of dynamic contrast-enhanced imaging
    Matsuoka, Yoh
    Ueno, Yoshihiko
    Uehara, Sho
    Tanaka, Hiroshi
    Kobayashi, Masaki
    Tanaka, Hajime
    Yoshida, Soichiro
    Yokoyama, Minato
    Kumazawa, Itsuo
    Fujii, Yasuhisa
    INTERNATIONAL JOURNAL OF UROLOGY, 2023, 30 (12) : 1103 - 1111
  • [7] Diagnostic Performance of Biparametric MRI for Detection of Prostate Cancer: A Systematic Review and Meta-Analysis
    Niu, Xiang-ke
    Chen, Xue-hui
    Chen, Zhi-fan
    Chen, Lin
    Li, Jun
    Peng, Tao
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2018, 211 (02) : 369 - 378
  • [8] Clinically Significant Prostate Cancer Detection With Biparametric MRI: A Systematic Review and Meta-Analysis
    Cuocolo, Renato
    Verde, Francesco
    Ponsiglione, Andrea
    Romeo, Valeria
    Petretta, Mario
    Imbriaco, Massimo
    Stanzione, Arnaldo
    AMERICAN JOURNAL OF ROENTGENOLOGY, 2021, 216 (03) : 608 - 621
  • [9] Deep Learning Regression for Prostate Cancer Detection and Grading in Bi-Parametric MRI
    Vente, Coen de
    Vos, Pieter
    Hosseinzadeh, Matin
    Pluim, Josien
    Veta, Mitko
    IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2021, 68 (02) : 374 - 383
  • [10] Evaluation of a Deep Learning-based Algorithm for Post-Radiotherapy Prostate Cancer Local Recurrence Detection Using Biparametric MRI
    Yilmaz, Enis C.
    Harmon, Stephanie A.
    Belue, Mason J.
    Merriman, Katie M.
    Phelps, Tim E.
    Lin, Yue
    Garcia, Charisse
    Hazen, Lindsey
    Patel, Krishnan R.
    Merino, Maria J.
    Wood, Bradford J.
    Choyke, Peter L.
    Pinto, Peter A.
    Citrin, Deborah E.
    Turkbey, Baris
    EUROPEAN JOURNAL OF RADIOLOGY, 2023, 168