Colloidal gel elasticity arises from the packing of locally glassy clusters

被引:115
作者
Whitaker, Kathryn A. [1 ,5 ]
Varga, Zsigmond [2 ]
Hsiao, Lilian C. [3 ]
Solomon, Michael J. [4 ]
Swan, James W. [2 ]
Furst, Eric M. [1 ]
机构
[1] Univ Delaware, Dept Chem & Biomol Engn, Newark, DE 19716 USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] North Carolina State Univ, Dept Chem & Biomol Engn, Engn Bldg 1, Raleigh, NC 27695 USA
[4] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
[5] Dow, 1702 Bldg, Midland, MI 48667 USA
基金
美国国家科学基金会;
关键词
PHASE-DIAGRAM; PARTICLES; AGGREGATION; BEHAVIOR; EQUATION; GELATION;
D O I
10.1038/s41467-019-10039-w
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Colloidal gels formed by arrested phase separation are found widely in agriculture, biotechnology, and advanced manufacturing; yet, the emergence of elasticity and the nature of the arrested state in these abundant materials remains unresolved. Here, the quantitative agreement between integrated experimental, computational, and graph theoretic approaches are used to understand the arrested state and the origins of the gel elastic response. The micro-structural source of elasticity is identified by the l-balanced graph partition of the gels into minimally interconnected clusters that act as rigid, load bearing units. The number density of cluster-cluster connections grows with increasing attraction, and explains the emergence of elasticity in the network through the classic Cauchy-Born theory. Clusters are amorphous and iso-static. The internal cluster concentration maps onto the known attractive glass line of sticky colloids at low attraction strengths and extends it to higher strengths and lower particle volume fractions.
引用
收藏
页数:8
相关论文
共 49 条
[1]   Amorphous solids: Their structure, lattice dynamics and elasticity [J].
Alexander, S .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 296 (2-4) :65-236
[2]   INTERACTION BETWEEN PARTICLES SUSPENDED IN SOLUTIONS OF MACROMOLECULES [J].
ASAKURA, S ;
OOSAWA, F .
JOURNAL OF POLYMER SCIENCE, 1958, 33 (126) :183-192
[3]   PERCUS-YEVICK EQUATION FOR HARD SPHERES WITH SURFACE ADHESION [J].
BAXTER, RJ .
JOURNAL OF CHEMICAL PHYSICS, 1968, 49 (06) :2770-&
[4]   Arresting dissolution by interfacial rheology design [J].
Beltramo, Peter J. ;
Gupta, Manish ;
Alicke, Alexandra ;
Liascukiene, Irma ;
Gunes, Deniz Z. ;
Baroud, Charles N. ;
Vermant, Jan .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (39) :10373-10378
[5]  
BINDER K, 1974, PHYS REV LETT, V33, P1006, DOI 10.1103/PhysRevLett.33.1006
[6]   EQUATION OF STATE FOR NONATTRACTING RIGID SPHERES [J].
CARNAHAN, NF ;
STARLING, KE .
JOURNAL OF CHEMICAL PHYSICS, 1969, 51 (02) :635-&
[7]   Methods of digital video microscopy for colloidal studies [J].
Crocker, JC ;
Grier, DG .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 1996, 179 (01) :298-310
[8]   Structure-property relationships from universal signatures of plasticity in disordered solids [J].
Cubuk, E. D. ;
Ivancic, R. J. S. ;
Schoenholz, S. S. ;
Strickland, D. J. ;
Basu, A. ;
Davidson, Z. S. ;
Fontaine, J. ;
Hor, J. L. ;
Huang, Y. -R. ;
Jiang, Y. ;
Keim, N. C. ;
Koshigan, K. D. ;
Lefever, J. A. ;
Liu, T. ;
Ma, X. -G. ;
Magagnosc, D. J. ;
Morrow, E. ;
Ortiz, C. P. ;
Rieser, J. M. ;
Shavit, A. ;
Still, T. ;
Xu, Y. ;
Zhang, Y. ;
Nordstrom, K. N. ;
Arratia, P. E. ;
Carpick, R. W. ;
Durian, D. J. ;
Fakhraai, Z. ;
Jerolmack, D. J. ;
Lee, Daeyeon ;
Li, Ju ;
Riggleman, R. ;
Turner, K. T. ;
Yodh, A. G. ;
Gianola, D. S. ;
Liu, Andrea J. .
SCIENCE, 2017, 358 (6366) :1033-1037
[9]   Structure and dynamics of colloidal depletion gels: Coincidence of transitions and heterogeneity [J].
Dibble, Clare J. ;
Kogan, Michael ;
Solomon, Michael J. .
PHYSICAL REVIEW E, 2006, 74 (04)
[10]   Rapid sampling of stochastic displacements in Brownian dynamics simulations [J].
Fiore, Andrew M. ;
Usabiaga, Florencio Balboa ;
Donev, Aleksandar ;
Swan, James W. .
JOURNAL OF CHEMICAL PHYSICS, 2017, 146 (12)