Methanol steam reforming by heat-insulated warm plasma catalysis for efficient hydrogen production

被引:26
作者
Lian, Hao-Yu [1 ]
Li, Xiao-Song [1 ]
Liu, Jing-Lin [1 ]
Zhu, Ai-Min [1 ]
机构
[1] Dalian Univ Technol, Sch Phys, Lab Plasma Phys Chem, Dalian 116024, Peoples R China
基金
中国国家自然科学基金;
关键词
Plasma catalysis; Methanol reforming; Hydrogen production; Energy efficiency; DISCHARGE PLASMA; BIOGAS; WATER; DECOMPOSITION; GENERATION;
D O I
10.1016/j.cattod.2019.03.068
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Efficient hydrogen production from methanol steam reforming is carried out in a heat-insulated warm plasma-catalytic (WPC) reactor. Methanol steam reforming in warm plasma and warm plasma-catalytic cases is investigated. For warm plasma alone, methanol mainly converts via pyrolysis reaction and its conversion linearly increases with specific energy input (SEI). The arc channel temperature and electron density of warm plasma are respectively measured to be around 2500 K and 3 x 10(14) cm(-3), based on optical emission spectra. To take advantage of energy from plasma, Fe-Cu/gamma-Al2O3 catalyst for methanol steam reforming and water gas shift is placed after the warm plasma. Compare with plasma alone, methanol conversion in WPC case is nearly double therefore the energy cost decreases from 1.71 kW h/Nm(3) to 0.85 kW h/Nm(3). Energy efficiency of 84% and H-2 selectivity of 98% with methanol conversion of 94% are achieved in this warm plasma-catalytic reactor.
引用
收藏
页码:76 / 82
页数:7
相关论文
共 40 条
  • [1] Hydrogen production, storage, transportation and key challenges with applications: A review
    Abdalla, Abdalla M.
    Hossain, Shahzad
    Nisfindy, Ozzan B.
    Azad, Atia T.
    Dawood, Mohamed
    Azad, Abul K.
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2018, 165 : 602 - 627
  • [2] Hydrogen-rich gas production from gasoline in a short contact time catalytic reactor
    Bobrova, L.
    Zolotarsky, I.
    Sadykov, V.
    Sobyanin, V.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (16) : 3698 - 3704
  • [3] Plasma Technology: An Emerging Technology for Energy Storage
    Bogaerts, Annemie
    Neyts, Erik C.
    [J]. ACS ENERGY LETTERS, 2018, 3 (04): : 1013 - 1027
  • [4] Gas temperature determination from rotational lines in non-equilibrium plasmas: a review
    Bruggeman, P. J.
    Sadeghi, N.
    Schram, D. C.
    Linss, V.
    [J]. PLASMA SOURCES SCIENCE & TECHNOLOGY, 2014, 23 (02)
  • [5] Hydrogen production from methanol reforming in microwave "tornado"-type plasma
    Bundaleska, N.
    Tsyganov, D.
    Saavedra, R.
    Tatarova, E.
    Dias, F. M.
    Ferreira, C. M.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2013, 38 (22) : 9145 - 9157
  • [6] Hydrogen Generation by Pulsed Gliding Arc Discharge Plasma with Sprays of Alcohol Solutions
    Burlica, Radu
    Shih, Kai-Yuan
    Hnatiuc, Bogdan
    Locke, Bruce R.
    [J]. INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2011, 50 (15) : 9466 - 9470
  • [7] CO2 Hydrogenation in a Dielectric Barrier Discharge Plasma Revealed
    De Bie, Christophe
    van Dijk, Jan
    Bogaerts, Annemie
    [J]. JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (44) : 25210 - 25224
  • [8] NixCuy/Al2O3 based catalysts for hydrogen production
    De Rogatis, Loredana
    Montini, Tiziano
    Lorenzut, Barbara
    Fornasiero, Paolo
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2008, 1 (04) : 501 - 509
  • [9] Effects of reactor type and voltage properties in methanol reforming with nonthermal plasma
    Futamura, S
    Kabashima, H
    [J]. IEEE TRANSACTIONS ON INDUSTRY APPLICATIONS, 2004, 40 (06) : 1459 - 1466
  • [10] Catalysts prepared from copper-nickel ferrites for the steam reforming of methanol
    Huang, Yung-Han
    Wang, Sea-Fue
    Tsai, An-Pang
    Kameoka, Satoshi
    [J]. JOURNAL OF POWER SOURCES, 2015, 281 : 138 - 145