Algebraicity of metaplectic L-functions

被引:0
作者
Mercuri, Salvatore [1 ]
机构
[1] Univ Durham, Dept Math Sci, Stockton Rd, Durham DH1 3LE, England
基金
英国工程与自然科学研究理事会;
关键词
Half-integral weight modular forms; Critical values; Algebraicity; ZETA-FUNCTIONS; EISENSTEIN SERIES; CRITICAL-VALUES; FORMS;
D O I
10.1016/j.jnt.2020.09.015
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a precise determination of the algebraicity of the critical values of L-functions associated to Siegel modular forms of half-integral weight and arbitrary degree. We generalise and improve on similar results for the integral weight case by adapting the Rankin-Selberg method to this setting, with the aid of Shimura's theory of half-integral weight modular forms and recent work on precise algebraicity results by Bouganis. An essential ingredient of this work is a proof of a new analogue of Garrett's conjecture on the algebraicity of Klingen Eisenstein series, a result which is also of independent interest. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:109 / 161
页数:53
相关论文
共 34 条
[1]  
Andrianov A., 1974, Russian Math Surveys, V29, P45
[2]   ANALYTIC PROPERTIES OF STANDARD ZETA-FUNCTIONS OF SIEGEL MODULAR-FORMS [J].
ANDRIANOV, AN ;
KALININ, VL .
MATHEMATICS OF THE USSR-SBORNIK, 1979, 35 (01) :1-17
[3]  
[Anonymous], 1979, RUSS MATH SURV+, V34, P75
[4]   On special L-values attached to metaplectic modular forms [J].
Bouganis, Thanasis .
MATHEMATISCHE ZEITSCHRIFT, 2018, 288 (3-4) :725-740
[5]  
Bouganis Thanasis, 2014, IWASAWA THEORY 2012, V7, P135
[6]  
Cartan H., 1958, SEMIN CARTAN, V10
[7]  
DELIGNE P., 1979, AUTOMORPHIC FORMS RE, V33, P313
[8]  
FALTINGS G, 1980, DEGENERATION ABELIAN
[9]  
Gan WT, 2018, ASTERISQUE, P187
[10]  
GAO F, 2018, AM J MATH, V140, P83, DOI DOI 10.1353/AJM.2018.0001