ASYMPTOTICS FOR RANK PARTITION FUNCTIONS

被引:28
作者
Bringmann, Kathrin [1 ]
机构
[1] Univ Cologne, Math Inst, D-50931 Cologne, Germany
关键词
MOCK THETA-FUNCTIONS;
D O I
10.1090/S0002-9947-09-04553-X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we obtain asymptotic formulas for an in finite class of rank generating functions. As an application, we solve a conjecture of Andrews and Lewis on inequalities between certain ranks.
引用
收藏
页码:3483 / 3500
页数:18
相关论文
共 14 条
[1]  
Andrews G.E., 1998, THEORY PARTITIONS
[2]  
Andrews G.E., 1989, Theta functions-Bowdoin 1987, V49, P283
[3]   The ranks and cranks of partitions moduli 2, 3, and 4 [J].
Andrews, GA ;
Lewis, R .
JOURNAL OF NUMBER THEORY, 2000, 85 (01) :74-84
[4]   ON THEOREMS OF WATSON AND DRAGONETTE FOR RAMANUJANS MOCK THETA FUNCTIONS [J].
ANDREWS, GE .
AMERICAN JOURNAL OF MATHEMATICS, 1966, 88 (02) :454-&
[5]  
Atkin A.O.L., 1954, Proc. London Math. Soc. 3, V4, P84, DOI DOI 10.1112/PLMS/S3-4.1.84
[6]  
BRINGMANN K, ANN IN PRESS
[7]   The f(q) mock theta function conjecture and partition ranks [J].
Bringmann, Kathrin ;
Ono, Ken .
INVENTIONES MATHEMATICAE, 2006, 165 (02) :243-266
[8]   SOME ASYMPTOTIC FORMULAE FOR THE MOCK THETA-SERIES OF RAMANUJAN [J].
DRAGONETTE, LA .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1952, 72 (MAY) :474-500
[9]  
Du D., 1944, EUREKA CAMBRIDGE, V8, P10
[10]  
Dyson FJ., 1988, RAMANUJAN REVISITED, P7