Transfer Learning for Face Identification with Deep Face Model

被引:0
|
作者
Yu, Huapeng [1 ]
Luo, Zhenghua [1 ]
Tang, Yuanyan [2 ]
机构
[1] Univ Chengdu, Coll Informat Sci & Engn, Chengdu, Sichuan, Peoples R China
[2] Univ Macau, Dept Comp & Informat Sci, Macau, Peoples R China
来源
2016 7TH INTERNATIONAL CONFERENCE ON CLOUD COMPUTING AND BIG DATA (CCBD) | 2016年
关键词
deep learning; face recognition; transfer learning; invariance; discrimination;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Deep face model learned on big dataset surpasses human for face recognition task on difficult unconstrained face dataset. But in practice, we are often lack of resources to learn such a complex model, or we only have very limited training samples (sometimes only one for each class) for a specific face recognition task. In this paper, we address these problems through transferring an already learned deep face model to specific tasks on hand. We empirically transfer hierarchical representations of deep face model as a source model and then learn higher layer representations on a specific small training set to obtain a final task-specific target model. Experiments on face identification tasks with public small data set and practical real faces verify the effectiveness and efficiency of our approach for transfer learning. We also empirically explore an important open problem -- attributes and transferability of different layer features of deep model. We argue that lower layer features are both local and general, while higher layer ones are both global and specific which embraces both intra-class invariance and inter-class discrimination. The results of unsupervised feature visualization and supervised face identification strongly support our view.
引用
收藏
页码:13 / 18
页数:6
相关论文
共 50 条
  • [41] SRDANet: An Efficient Deep Learning Algorithm for Face Analysis
    Tian, Lei
    Fan, Chunxiao
    Ming, Yue
    Shi, Jiakun
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2015, PT I, 2015, 9244 : 499 - 510
  • [42] Review on Deep Learning-Based Face Analysis
    Talab, Mohammed Ahmed
    Tao, Hai
    Al-Saffar, Ahmed Ali Mohammed
    ADVANCED SCIENCE LETTERS, 2018, 24 (10) : 7630 - 7635
  • [43] Recent Advances in Deep Learning Techniques for Face Recognition
    Fuad, Md. Tahmid Hasan
    Fime, Awal Ahmed
    Sikder, Delowar
    Iftee, Md. Akil Raihan
    Rabbi, Jakaria
    Al-Rakhami, Mabrook S.
    Gumaei, Abdu
    Sen, Ovishake
    Fuad, Mohtasim
    Islam, Md. Nazrul
    IEEE ACCESS, 2021, 9 : 99112 - 99142
  • [44] Deep Learning based Face Recognition for Security Robot
    Lee, Min-Fan Ricky
    Huang, Yun-Min
    Sun, Jia-Yang
    Chen, Xue-Qin
    Huang, Ting-Fu
    2022 18TH IEEE/ASME INTERNATIONAL CONFERENCE ON MECHATRONIC AND EMBEDDED SYSTEMS AND APPLICATIONS (MESA 2022), 2022,
  • [45] Research on Unconstrained Face Recognition Based on Deep Learning
    Wan, Yan
    Zhang, Meng Xue
    Zhang, You An
    Yao, Li
    2020 INTERNATIONAL CONFERENCE ON BIG DATA & ARTIFICIAL INTELLIGENCE & SOFTWARE ENGINEERING (ICBASE 2020), 2020, : 219 - 227
  • [46] Deep learning prediction and model generalization of ground pressure for deep longwall face with large mining height
    Zhao Y.
    Yang Z.
    Ma B.
    Song H.
    Yang D.
    Meitan Xuebao/Journal of the China Coal Society, 2020, 45 (01): : 54 - 65
  • [47] Deep learning-based identification of rock discontinuities on 3D model of tunnel face
    Pham, Chuyen
    Kim, Byung-Chan
    Shin, Hyu-Soung
    TUNNELLING AND UNDERGROUND SPACE TECHNOLOGY, 2025, 158
  • [48] Age Invariant Face Recognition Based on Deep Learning
    He X.-C.
    Guo Y.
    Li Q.-L.
    Gao C.
    Zidonghua Xuebao/Acta Automatica Sinica, 2022, 48 (03): : 877 - 886
  • [49] Violence detection and face recognition based on deep learning
    Wang, Pin
    Wang, Peng
    Fan, En
    PATTERN RECOGNITION LETTERS, 2021, 142 : 20 - 24
  • [50] Double Supervision Face Recognition Based on Deep Learning
    Li, Zhiming
    Tang, Yongzhong
    2017 INTERNATIONAL CONFERENCE ON COMPUTER SYSTEMS, ELECTRONICS AND CONTROL (ICCSEC), 2017, : 1087 - 1090