Production of hydrogen and carbon nanotubes from methane decomposition in a two-stage fluidized bed reactor

被引:77
|
作者
Qian, WZ [1 ]
Liu, T
Wang, ZW
Wei, F
Li, ZF
Luo, GH
Li, YD
机构
[1] Tsinghua Univ, Dept Chem Engn, Beijing 100084, Peoples R China
[2] Tianjin Univ, Dept Chem Engn, Tianjin 300072, Peoples R China
基金
中国国家自然科学基金;
关键词
carbon nanotubes; catalyst deactivation; multi-stage fluidized bed reactor; nickel catalyst; methane decomposition;
D O I
10.1016/j.apcata.2003.10.018
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Methane decomposition over a Ni/Cu/Al2O3 catalyst is studied in a two-stage fluidized bed reactor. Low temperature is adopted in the lower stage and high temperature in the upper stage. This allows the fluidized catalysts to decompose methane with high activity in the high temperature condition: then the carbon produced will diffuse effectively to form carbon nanotubes (CNTs) in both low and high temperature regions. Thus the catalytic cycle of carbon production and carbon diffusion in micro scale can be tailored by a macroscopic method, which permits the catalyst to have high activity and high thermal stability even at 1123 K for hydrogen production for long times. Such controlled temperature condition also provides an increased thermal driving force for the nucleation of CNTs and hence favors the graphitization of CNTs, characterized by high resolution transmission electron microscopy (HRTEM), Raman spectroscopy and XRD. Multistage operation with different temperatures in a fluidized bed reactor is an effective way to meet the both requirements of hydrogen production and preparation of CNTs with relatively perfect microstructures. (C) 2003 Elsevier B.V. All rights reserved.
引用
收藏
页码:223 / 228
页数:6
相关论文
共 50 条
  • [1] Hydrogen production by the thermocatalytic decomposition of methane in a fluidized bed reactor
    Jang, Hyun Tae
    Cha, Wang Seog
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2007, 24 (02) : 374 - 377
  • [2] Co-production of carbon nanotubes and hydrogen from waste plastic gasification in a two-stage fluidized catalytic bed
    Yang, Ren-Xuan
    Wu, Shan-Luo
    Chuang, Kui-Hao
    Wey, Ming-Yen
    RENEWABLE ENERGY, 2020, 159 : 10 - 22
  • [3] Production of hydrogen from thermo-catalytic decomposition of methane in a fluidized bed reactor
    Ammendola, P.
    Chirone, R.
    Ruoppolo, G.
    Russo, G.
    CHEMICAL ENGINEERING JOURNAL, 2009, 154 (1-3) : 287 - 294
  • [4] Production of hydrogen from methane decomposition using nanosized carbon black as catalyst in a fluidized-bed reactor
    Chen, Jiuling
    He, Miao
    Wang, Gaowei
    Li, Yongdan
    Zhu, Zhonghua John
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2009, 34 (24) : 9730 - 9736
  • [5] Semi-continuous hydrogen production from catalytic methane decomposition using a fluidized-bed reactor
    Shah, Naresh
    Ma, Shankang
    Wang, Yuguo
    Huffman, Gerald P.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (15) : 3315 - 3319
  • [6] Hydrogen and carbon produced by fluidized bed catalytic methane decomposition
    Yang, Miao
    Baeyens, Jan
    Li, Shuo
    Zhang, Huili
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2024, 204 : 67 - 80
  • [7] Recent Progress in the Catalytic Decomposition of Methane in a Fluidized Bed for Hydrogen and Carbon Material Production
    Bae, Keon
    Go, Kang Seok
    Kim, Woohyun
    Lee, Doyeon
    KOREAN CHEMICAL ENGINEERING RESEARCH, 2023, 61 (02): : 175 - 188
  • [8] Gaseous catalytic hydrogenation of nitrobenzene to aniline in a two-stage fluidized bed reactor
    Diao, SG
    Qian, WZ
    Luo, GH
    Wei, F
    Wang, Y
    APPLIED CATALYSIS A-GENERAL, 2005, 286 (01) : 30 - 35
  • [9] Hydrogen production by catalytic decomposition of methane using a Fe-based catalyst in a fluidized bed reactor
    Torres, D.
    de Llobet, S.
    Pinilla, J. L.
    Lazaro, M. J.
    Suelves, I.
    Moliner, R.
    JOURNAL OF NATURAL GAS CHEMISTRY, 2012, 21 (04): : 367 - 373
  • [10] Simultaneous and Continuous Production of Carbon Nanotubes and Hydrogen by Catalytic CH4 Decomposition in a Pressurized Fluidized-Bed Reactor
    Bae, Keon
    Kim, Daewook
    Dung, Pham Anh
    Lee, Doyeon
    Hwang, Byungwook
    Go, Kang Seok
    Kim, Woohyun
    Lee, Jun Kyu
    Im, Ji Sun
    Kang, Seok Chang
    Lee, Soo Hong
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (02) : 930 - 941