PYKAT: Python']Python package for modelling precision optical interferometers

被引:10
作者
Brown, Daniel D. [1 ]
Jones, Philip [2 ,3 ]
Rowlinson, Samuel [2 ,3 ]
Leavey, Sean [6 ,7 ]
Green, Anna C. [8 ]
Toyra, Daniel [9 ]
Freise, Andreas [2 ,3 ,4 ,5 ]
机构
[1] Univ Adelaide, Sch Phys Sci, OzGrav Adelaide, Adelaide, SA 5005, Australia
[2] Univ Birmingham, Sch Phys & Astron, Birmingham B15 2TT, W Midlands, England
[3] Univ Birmingham, Inst Gravitat Wave Astron, Birmingham B15 2TT, W Midlands, England
[4] Vrije Univ Amsterdam, Dept Phys & Astron, De Boelelaan 1081, NL-1081 HV Amsterdam, Netherlands
[5] Nikhef, Sci Pk 105, NL-1098 XG Amsterdam, Netherlands
[6] Max Planck Inst Gravitat Phys, Albert Einstein Inst, Hannover, Germany
[7] Leibniz Univ Hannover, Hannover, Germany
[8] Univ Florida, Gainesville, FL 32611 USA
[9] Australian Natl Univ, Coll Sci, Ctr Gravitat Astrophys, OzGrav ANU, Canberra, ACT 2601, Australia
基金
英国科学技术设施理事会;
关键词
Interferometry modelling; Gravitational wave detector modelling; Quantum optics; Quantum noise;
D O I
10.1016/j.softx.2020.100613
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
PYKAT is a Python package which extends the popular optical interferometer modelling software FINESSE. It provides a more modern and efficient user interface for conducting complex numerical simulations, as well as enabling the use of Python's extensive scientific software ecosystem. In this paper we highlight the relationship between PYKAT and FINESSE, how it is used, and provide an illustrative example of how it has helped to better understand the characteristics of the current generation of gravitational wave interferometers. (C) 2020 The Author(s). Published by Elsevier B.V.
引用
收藏
页数:6
相关论文
共 16 条
[1]   Advanced LIGO [J].
Aasi, J. ;
Abbott, B. P. ;
Abbott, R. ;
Abbott, T. ;
Abernathy, M. R. ;
Ackley, K. ;
Adams, C. ;
Adams, T. ;
Addesso, P. ;
Adhikari, R. X. ;
Adya, V. ;
Affeldt, C. ;
Aggarwal, N. ;
Aguiar, O. D. ;
Ain, A. ;
Ajith, P. ;
Alemic, A. ;
Allen, B. ;
Amariutei, D. ;
Anderson, S. B. ;
Anderson, W. G. ;
Arai, K. ;
Araya, M. C. ;
Arceneaux, C. ;
Areeda, J. S. ;
Ashton, G. ;
Ast, S. ;
Aston, S. M. ;
Aufmuth, P. ;
Aulbert, C. ;
Aylott, B. E. ;
Babak, S. ;
Baker, P. T. ;
Ballmer, S. W. ;
Barayoga, J. C. ;
Barbet, M. ;
Barclay, S. ;
Barish, B. C. ;
Barker, D. ;
Barr, B. ;
Barsotti, L. ;
Bartlett, J. ;
Barton, M. A. ;
Bartos, I. ;
Bassiri, R. ;
Batch, J. C. ;
Baune, C. ;
Behnke, B. ;
Bell, A. S. ;
Bell, C. .
CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (07)
[2]  
Andreas Freise, 2013, ARXIV E PRINTS
[3]  
Andreas Freise, 2017, FINESSE HIST IMPACT
[4]  
[Anonymous], **DATA OBJECT**, DOI DOI 10.5281/ZEN0D0.821364
[5]  
Bala Iyer, 2015, LIGO INDIA PROPOSAL
[6]  
Beausoleil Raymond G., 2001, MELODY
[7]   Interferometer techniques for gravitational-wave detection [J].
Bond, Charlotte ;
Brown, Daniel ;
Freise, Andreas ;
Strain, Kenneth A. .
LIVING REVIEWS IN RELATIVITY, 2016, 19 :1-221
[8]   Fast simulation of Gaussian-mode scattering for precision interferometry [J].
Brown, D. ;
Smith, R. J. E. ;
Freise, A. .
JOURNAL OF OPTICS, 2016, 18 (02)
[9]  
David Reitze, 2019, ADV INTERFEROMETRIC, DOI [10.1142/10181, DOI 10.1142/10181]
[10]   What Makes Research Software Sustainable? An Interview Study With Research Software Engineers [J].
de Souza, Mario Rosado ;
Haines, Robert ;
Vigo, Markel ;
Jay, Caroline .
2019 IEEE/ACM 12TH INTERNATIONAL WORKSHOP ON COOPERATIVE AND HUMAN ASPECTS OF SOFTWARE ENGINEERING (CHASE 2019), 2019, :135-138