SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies

被引:1083
作者
Barnes, Christopher O. [1 ]
Jette, Claudia A. [1 ]
Abernathy, Morgan E. [1 ]
Dam, Kim-Marie A. [1 ]
Esswein, Shannon R. [1 ]
Gristick, Harry B. [1 ]
Malyutin, Andrey G. [2 ]
Sharaf, Naima G. [3 ]
Huey-Tubman, Kathryn E. [1 ]
Lee, Yu E. [1 ]
Robbiani, Davide F. [4 ,6 ]
Nussenzweig, Michel C. [4 ,5 ]
West, Anthony P., Jr. [1 ]
Bjorkman, Pamela J. [1 ]
机构
[1] CALTECH, Div Biol & Biol Engn, Pasadena, CA 91125 USA
[2] CALTECH, Beckman Inst, Pasadena, CA 91125 USA
[3] CALTECH, Div Chem & Chem Engn, Pasadena, CA USA
[4] Rockefeller Univ, Lab Mol Immunol, 1230 York Ave, New York, NY 10021 USA
[5] Howard Hughes Med Inst, Chevy Chase, MD USA
[6] Univ Svizzera Italiana, Inst Res Biomed, Bellinzona, Switzerland
基金
美国国家卫生研究院;
关键词
CRYO-EM STRUCTURE; SPIKE; REVEALS;
D O I
10.1038/s41586-020-2852-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Eight structures of human neutralizing antibodies that target the SARS-CoV-2 spike receptor-binding domain are reported and classified into four categories, suggesting combinations for clinical use. The coronavirus disease 2019 (COVID-19) pandemic presents an urgent health crisis. Human neutralizing antibodies that target the host ACE2 receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein(1-5) show promise therapeutically and are being evaluated clinically(6-8). Here, to identify the structural correlates of SARS-CoV-2 neutralization, we solved eight new structures of distinct COVID-19 human neutralizing antibodies(5) in complex with the SARS-CoV-2 spike trimer or RBD. Structural comparisons allowed us to classify the antibodies into categories: (1) neutralizing antibodies encoded by the VH3-53 gene segment with short CDRH3 loops that block ACE2 and bind only to 'up' RBDs; (2) ACE2-blocking neutralizing antibodies that bind both up and 'down' RBDs and can contact adjacent RBDs; (3) neutralizing antibodies that bind outside the ACE2 site and recognize both up and down RBDs; and (4) previously described antibodies that do not block ACE2 and bind only to up RBDs(9). Class 2 contained four neutralizing antibodies with epitopes that bridged RBDs, including a VH3-53 antibody that used a long CDRH3 with a hydrophobic tip to bridge between adjacent down RBDs, thereby locking the spike into a closed conformation. Epitope and paratope mapping revealed few interactions with host-derived N-glycans and minor contributions of antibody somatic hypermutations to epitope contacts. Affinity measurements and mapping of naturally occurring and in vitro-selected spike mutants in 3D provided insight into the potential for SARS-CoV-2 to escape from antibodies elicited during infection or delivered therapeutically. These classifications and structural analyses provide rules for assigning current and future human RBD-targeting antibodies into classes, evaluating avidity effects and suggesting combinations for clinical use, and provide insight into immune responses against SARS-CoV-2.
引用
收藏
页码:682 / +
页数:22
相关论文
共 69 条
  • [41] Punjani A, 2017, NAT METHODS, V14, P290, DOI [10.1038/NMETH.4169, 10.1038/nmeth.4169]
  • [42] Robbiani Davide F, 2020, Nature, V584, P437, DOI [10.1101/2020.05.13.092619, 10.1038/s41586-020-2456-9]
  • [43] Rogers Thomas F, 2020, Science, V369, P956, DOI [10.1101/2020.05.11.088674, 10.1126/science.abc7520]
  • [44] CTFFIND4: Fast and accurate defocus estimation from electron micrographs
    Rohou, Alexis
    Grigorieff, Nikolaus
    [J]. JOURNAL OF STRUCTURAL BIOLOGY, 2015, 192 (02) : 216 - 221
  • [45] Broadly Neutralizing Antibody 8ANC195 Recognizes Closed and Open States of HIV-1 Env
    Scharf, Louise
    Wang, Haoqing
    Gao, Han
    Chen, Songye
    McDowall, Alasdair W.
    Bjorkman, Pamela J.
    [J]. CELL, 2015, 162 (06) : 1379 - 1390
  • [46] Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope
    Schoofs, Till
    Barnes, Christopher O.
    Suh-Toma, Nina
    Golijanin, Jovana
    Schommers, Philipp
    Gruell, Henning
    West, Anthony P., Jr.
    Bach, Franziska
    Lee, Yu Erica
    Nogueira, Lilian
    Georgiev, Ivelin S.
    Bailer, Robert T.
    Czartoski, Julie
    Mascola, John R.
    Seaman, Michael S.
    McElrath, M. Juliana
    Doria-Rose, Nicole A.
    Klein, Florian
    Nussenzweig, Michel C.
    Bjorkman, Pamela J.
    [J]. IMMUNITY, 2019, 50 (06) : 1513 - +
  • [47] Seydoux Emilie, 2020, bioRxiv, DOI 10.1101/2020.05.12.091298
  • [48] Structural basis of receptor recognition by SARS-CoV-2
    Shang, Jian
    Ye, Gang
    Shi, Ke
    Wan, Yushun
    Luo, Chuming
    Aihara, Hideki
    Geng, Qibin
    Auerbach, Ashley
    Li, Fang
    [J]. NATURE, 2020, 581 (7807) : 221 - +
  • [49] A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2
    Shi, Rui
    Shan, Chao
    Duan, Xiaomin
    Chen, Zhihai
    Liu, Peipei
    Song, Jinwen
    Song, Tao
    Bi, Xiaoshan
    Han, Chao
    Wu, Lianao
    Gao, Ge
    Hu, Xue
    Zhang, Yanan
    Tong, Zhou
    Huang, Weijin
    Liu, William Jun
    Wu, Guizhen
    Zhang, Bo
    Wang, Lan
    Qi, Jianxun
    Feng, Hui
    Wang, Fu-Sheng
    Wang, Qihui
    Gao, George Fu
    Yuan, Zhiming
    Yan, Jinghua
    [J]. NATURE, 2020, 584 (7819) : 120 - +
  • [50] A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps
    Terwilliger, Thomas C.
    Adams, Paul D.
    Afonine, Pavel V.
    Sobolev, Oleg V.
    [J]. NATURE METHODS, 2018, 15 (11) : 905 - +