SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies

被引:1133
作者
Barnes, Christopher O. [1 ]
Jette, Claudia A. [1 ]
Abernathy, Morgan E. [1 ]
Dam, Kim-Marie A. [1 ]
Esswein, Shannon R. [1 ]
Gristick, Harry B. [1 ]
Malyutin, Andrey G. [2 ]
Sharaf, Naima G. [3 ]
Huey-Tubman, Kathryn E. [1 ]
Lee, Yu E. [1 ]
Robbiani, Davide F. [4 ,6 ]
Nussenzweig, Michel C. [4 ,5 ]
West, Anthony P., Jr. [1 ]
Bjorkman, Pamela J. [1 ]
机构
[1] CALTECH, Div Biol & Biol Engn, Pasadena, CA 91125 USA
[2] CALTECH, Beckman Inst, Pasadena, CA 91125 USA
[3] CALTECH, Div Chem & Chem Engn, Pasadena, CA USA
[4] Rockefeller Univ, Lab Mol Immunol, 1230 York Ave, New York, NY 10021 USA
[5] Howard Hughes Med Inst, Chevy Chase, MD USA
[6] Univ Svizzera Italiana, Inst Res Biomed, Bellinzona, Switzerland
基金
美国国家卫生研究院;
关键词
CRYO-EM STRUCTURE; SPIKE; REVEALS;
D O I
10.1038/s41586-020-2852-1
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Eight structures of human neutralizing antibodies that target the SARS-CoV-2 spike receptor-binding domain are reported and classified into four categories, suggesting combinations for clinical use. The coronavirus disease 2019 (COVID-19) pandemic presents an urgent health crisis. Human neutralizing antibodies that target the host ACE2 receptor-binding domain (RBD) of the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) spike protein(1-5) show promise therapeutically and are being evaluated clinically(6-8). Here, to identify the structural correlates of SARS-CoV-2 neutralization, we solved eight new structures of distinct COVID-19 human neutralizing antibodies(5) in complex with the SARS-CoV-2 spike trimer or RBD. Structural comparisons allowed us to classify the antibodies into categories: (1) neutralizing antibodies encoded by the VH3-53 gene segment with short CDRH3 loops that block ACE2 and bind only to 'up' RBDs; (2) ACE2-blocking neutralizing antibodies that bind both up and 'down' RBDs and can contact adjacent RBDs; (3) neutralizing antibodies that bind outside the ACE2 site and recognize both up and down RBDs; and (4) previously described antibodies that do not block ACE2 and bind only to up RBDs(9). Class 2 contained four neutralizing antibodies with epitopes that bridged RBDs, including a VH3-53 antibody that used a long CDRH3 with a hydrophobic tip to bridge between adjacent down RBDs, thereby locking the spike into a closed conformation. Epitope and paratope mapping revealed few interactions with host-derived N-glycans and minor contributions of antibody somatic hypermutations to epitope contacts. Affinity measurements and mapping of naturally occurring and in vitro-selected spike mutants in 3D provided insight into the potential for SARS-CoV-2 to escape from antibodies elicited during infection or delivered therapeutically. These classifications and structural analyses provide rules for assigning current and future human RBD-targeting antibodies into classes, evaluating avidity effects and suggesting combinations for clinical use, and provide insight into immune responses against SARS-CoV-2.
引用
收藏
页码:682 / +
页数:22
相关论文
共 70 条
[41]  
Punjani A, 2017, NAT METHODS, V14, P290, DOI [10.1038/NMETH.4169, 10.1038/nmeth.4169]
[42]  
Robbiani Davide F, 2020, bioRxiv, DOI [10.1038/s41586-020-2456-9, 10.1101/2020.05.13.092619]
[43]  
Rogers Thomas F, 2020, bioRxiv, DOI [10.1126/science.abc7520, 10.1101/2020.05.11.088674]
[44]   CTFFIND4: Fast and accurate defocus estimation from electron micrographs [J].
Rohou, Alexis ;
Grigorieff, Nikolaus .
JOURNAL OF STRUCTURAL BIOLOGY, 2015, 192 (02) :216-221
[45]   Broadly Neutralizing Antibody 8ANC195 Recognizes Closed and Open States of HIV-1 Env [J].
Scharf, Louise ;
Wang, Haoqing ;
Gao, Han ;
Chen, Songye ;
McDowall, Alasdair W. ;
Bjorkman, Pamela J. .
CELL, 2015, 162 (06) :1379-1390
[46]   Broad and Potent Neutralizing Antibodies Recognize the Silent Face of the HIV Envelope [J].
Schoofs, Till ;
Barnes, Christopher O. ;
Suh-Toma, Nina ;
Golijanin, Jovana ;
Schommers, Philipp ;
Gruell, Henning ;
West, Anthony P., Jr. ;
Bach, Franziska ;
Lee, Yu Erica ;
Nogueira, Lilian ;
Georgiev, Ivelin S. ;
Bailer, Robert T. ;
Czartoski, Julie ;
Mascola, John R. ;
Seaman, Michael S. ;
McElrath, M. Juliana ;
Doria-Rose, Nicole A. ;
Klein, Florian ;
Nussenzweig, Michel C. ;
Bjorkman, Pamela J. .
IMMUNITY, 2019, 50 (06) :1513-+
[47]  
Seydoux Emilie, 2020, bioRxiv, DOI 10.1101/2020.05.12.091298
[48]   Structural basis of receptor recognition by SARS-CoV-2 [J].
Shang, Jian ;
Ye, Gang ;
Shi, Ke ;
Wan, Yushun ;
Luo, Chuming ;
Aihara, Hideki ;
Geng, Qibin ;
Auerbach, Ashley ;
Li, Fang .
NATURE, 2020, 581 (7807) :221-+
[49]   A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2 [J].
Shi, Rui ;
Shan, Chao ;
Duan, Xiaomin ;
Chen, Zhihai ;
Liu, Peipei ;
Song, Jinwen ;
Song, Tao ;
Bi, Xiaoshan ;
Han, Chao ;
Wu, Lianao ;
Gao, Ge ;
Hu, Xue ;
Zhang, Yanan ;
Tong, Zhou ;
Huang, Weijin ;
Liu, William Jun ;
Wu, Guizhen ;
Zhang, Bo ;
Wang, Lan ;
Qi, Jianxun ;
Feng, Hui ;
Wang, Fu-Sheng ;
Wang, Qihui ;
Gao, George Fu ;
Yuan, Zhiming ;
Yan, Jinghua .
NATURE, 2020, 584 (7819) :120-+
[50]   A fully automatic method yielding initial models from high-resolution cryo-electron microscopy maps [J].
Terwilliger, Thomas C. ;
Adams, Paul D. ;
Afonine, Pavel V. ;
Sobolev, Oleg V. .
NATURE METHODS, 2018, 15 (11) :905-+