Peptide Solubility Limits: Backbone and Side-Chain Interactions

被引:21
|
作者
Sarma, Rahul [1 ]
Wong, Ka-Yiu [1 ]
Lynch, Gillian C. [1 ]
Pettitt, B. Montgomery [1 ]
机构
[1] Univ Texas Med Branch, Sealy Ctr Struct Biol & Mol Biophys, Dept Biochem & Mol Biol, 301 Univ Blvd, Galveston, TX 77555 USA
来源
JOURNAL OF PHYSICAL CHEMISTRY B | 2018年 / 122卷 / 13期
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
CARBONYL-CARBONYL INTERACTIONS; PREFERENTIAL INTERACTION COEFFICIENTS; INTRINSICALLY DISORDERED PROTEINS; SOLVATION FREE-ENERGY; HYDROGEN-BONDS; AMINO-ACIDS; CONFORMATIONAL STABILITY; MOLECULAR-DYNAMICS; SECONDARY STRUCTURE; TRANSFER MODEL;
D O I
10.1021/acs.jpcb.7b10734
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We calculate the solubility limit of pentapeptides in water by simulating the phase separation in an oversaturated aqueous solution. The solubility limit order followed by our model peptides (GGRGG > GGDGG > GGGGG > GGVGG > GGQGG > GGNGG > GGFGG) is found to be the same as that reported for amino acid monomers from experiment (R > D > G > V > Q > N > F). Investigation of dynamical properties of peptides shows that the higher the solubility of a peptide is, the lower the time spent by the peptide in the aggregated cluster is. We also demonstrate that fluctuations in conformation and hydration number of peptide in monomeric form are correlated with the solubility of the peptide. We considered energetic mechanisms and dynamical properties of interbackbone CO-CO and CO center dot center dot center dot HN interactions. Our results confirm that CO-CO interactions more than the interbackbone H-bonds are important in peptide self-assembly and association. Further, we find that the stability of H-bonded peptide pairs arises mainly from coexisting CO-CO and CO center dot center dot center dot HN interactions.
引用
收藏
页码:3528 / 3539
页数:12
相关论文
共 50 条
  • [31] SIDE-CHAIN LIQUID-CRYSTALLINE POLYMERS WITH POLYSTYRENE BACKBONE
    NIEMELA, S
    SELKALA, R
    SUNDHOLM, F
    TAIVAINEN, J
    JOURNAL OF MACROMOLECULAR SCIENCE-PURE AND APPLIED CHEMISTRY, 1992, 29 (11): : 1071 - 1084
  • [32] Detection of Correlated Protein Backbone and Side-Chain Angle Fluctuations
    Fenwick, R. Bryn
    Vogeli, Beat
    CHEMBIOCHEM, 2017, 18 (20) : 2016 - 2021
  • [33] Prediction and evaluation of side-chain conformations for protein backbone structures
    Shenkin, PS
    Farid, H
    Fetrow, JS
    PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 1996, 26 (03) : 323 - 352
  • [34] Backbone and side-chain cleavages in electron detachment dissociation (EDD)
    Anusiewicz, I
    Jasionowski, M
    Skurski, P
    Simons, J
    JOURNAL OF PHYSICAL CHEMISTRY A, 2005, 109 (49): : 11332 - 11337
  • [35] Backbone and side-chain resonance assignments of Plasmodium falciparum SUMO
    Jai Shankar Singh
    Vaibhav Kumar Shukla
    Mansi Gujrati
    Ram Kumar Mishra
    Ashutosh Kumar
    Biomolecular NMR Assignments, 2017, 11 : 17 - 20
  • [36] The influence of the backbone on the structure of side-chain liquid crystal polymers
    Ebbutt, J
    Richardson, RM
    Blackmore, J
    McDonnell, DG
    Verrall, M
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS SCIENCE AND TECHNOLOGY SECTION A-MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1995, 261 : 549 - 566
  • [37] Backbone and side-chain resonance assignments of Plasmodium falciparum SUMO
    Singh, Jai Shankar
    Shukla, Vaibhav Kumar
    Gujrati, Mansi
    Mishra, Ram Kumar
    Kumar, Ashutosh
    BIOMOLECULAR NMR ASSIGNMENTS, 2017, 11 (01) : 17 - 20
  • [39] Backbone effects on the anchoring of side-chain polymer liquid crystals
    Jerome, B
    Commandeur, J
    DeJeu, WH
    LIQUID CRYSTALS, 1997, 22 (06) : 685 - 692
  • [40] Peptide ligation via side-chain auxiliary
    Lutsky, Marina-Yamit
    Nepomniaschiy, Natalia
    Brik, Ashraf
    CHEMICAL COMMUNICATIONS, 2008, (10) : 1229 - 1231