Functional Segregation within the Dorsal Frontoparietal Network: A Multimodal Dynamic Causal Modeling Study

被引:3
|
作者
Raffin, Estelle [1 ,2 ,3 ,4 ]
Witon, Adrien [1 ,2 ,3 ,4 ,5 ]
Salamanca-Giron, Roberto F. [1 ,2 ,3 ,4 ]
Huxlin, Krystel R. [6 ,7 ]
Hummel, Friedhelm C. [1 ,2 ,3 ,4 ,8 ]
机构
[1] EPFL, Ctr Neuroprosthet, Defitech Chair Clin Neuroengn, CH-1201 Geneva, Switzerland
[2] EPFL, Brain Mind Inst, CH-1201 Geneva, Switzerland
[3] EPFL Valais, Ctr Neuroprosthet, Defitech Chair Clin Neuroengn, CH-1950 Sion, Switzerland
[4] EPFL Valais, Clin Romande Readaptat CRR, Brain Mind Inst, CH-1950 Sion, Switzerland
[5] Hop Valais, IT Dept, Hlth IT, Sion, Switzerland
[6] Univ Rochester, Flaum Eye Inst, Rochester, NY 14642 USA
[7] Univ Rochester, Ctr Visual Sci, Rochester, NY 14642 USA
[8] Univ Geneva, Clin Neurosci, Med Sch, CH-1205 Geneva, Switzerland
基金
瑞士国家科学基金会;
关键词
Dynamic Causal Modeling; electroencephalography; functional magnetic resonance imaging; motion discrimination; multimodal neuroimaging; TEMPORAL VISUAL AREA; PERCEPTION FOLLOWING LESIONS; BOTTOM-UP MECHANISMS; TOP-DOWN; MOTION PERCEPTION; NEURAL MECHANISMS; EVOKED POTENTIALS; NEURONAL DYNAMICS; PARIETAL CORTEX; HUMAN BRAIN;
D O I
10.1093/cercor/bhab409
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Discrimination and integration of motion direction requires the interplay of multiple brain areas. Theoretical accounts of perception suggest that stimulus-related (i.e., exogenous) and decision-related (i.e., endogenous) factors affect distributed neuronal processing at different levels of the visual hierarchy. To test these predictions, we measured brain activity of healthy participants during a motion discrimination task, using electroencephalography (EEG) and functional magnetic resonance imaging (fMRI). We independently modeled the impact of exogenous factors (task demand) and endogenous factors (perceptual decision-making) on the activity of the motion discrimination network and applied Dynamic Causal Modeling (DCM) to both modalities. DCM for event-related potentials (DCM-ERP) revealed that task demand impacted the reciprocal connections between the primary visual cortex (V1) and medial temporal areas (V5). With practice, higher visual areas were increasingly involved, as revealed by DCM-fMRI. Perceptual decision-making modulated higher levels (e.g., V5-to-Frontal Eye Fields, FEF), in a manner predictive of performance. Our data suggest that lower levels of the visual network support early, feature-based selection of responses, especially when learning strategies have not been implemented. In contrast, perceptual decision-making operates at higher levels of the visual hierarchy by integrating sensory information with the internal state of the subject.
引用
收藏
页码:3187 / 3205
页数:19
相关论文
共 50 条
  • [1] Dynamic Upper and Lower Visual Field Preferences Within the Human Dorsal Frontoparietal Attention Network
    Kraft, Antje
    Sommer, Wieland H.
    Schmidt, Sein
    Brandt, Stephan A.
    HUMAN BRAIN MAPPING, 2011, 32 (07) : 1036 - 1049
  • [2] Functional and structural architecture of the human dorsal frontoparietal attention network
    Szczepanski, Sara M.
    Pinsk, Mark A.
    Douglas, Malia M.
    Kastner, Sabine
    Saalmann, Yuri B.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2013, 110 (39) : 15806 - 15811
  • [3] Generalized Recurrent Neural Network accommodating Dynamic Causal Modeling for functional MRI analysis
    Wang, Yuan
    Wang, Yao
    Lui, Yvonne W.
    NEUROIMAGE, 2018, 178 : 385 - 402
  • [4] Deconstructing the Architecture of Dorsal and Ventral Attention Systems with Dynamic Causal Modeling
    Vossel, Simone
    Weidner, Ralph
    Driver, Jon
    Friston, Karl J.
    Fink, Gereon R.
    JOURNAL OF NEUROSCIENCE, 2012, 32 (31): : 10637 - 10648
  • [5] A Dynamic Interplay within the Frontoparietal Network Underlies Rhythmic Spatial Attention
    Fiebelkorn, Ian C.
    Pinsk, Mark A.
    Kastner, Sabine
    NEURON, 2018, 99 (04) : 842 - +
  • [6] The functional anatomy of schizophrenia: A dynamic causal modeling study of predictive coding
    Fogelson, Noa
    Litvak, Vladimir
    Peled, Avi
    Fernandez-del-Olmo, Miguel
    Friston, Karl
    SCHIZOPHRENIA RESEARCH, 2014, 158 (1-3) : 204 - 212
  • [7] Inhibitory Behavioral Control: A Stochastic Dynamic Causal Modeling Study Using Network Discovery Analysis
    Ma, Liangsuo
    Steinberg, Joel L.
    Cunningham, Kathryn A.
    Lane, Scott D.
    Kramer, Larry A.
    Narayana, Ponnada A.
    Kosten, Thomas R.
    Bechara, Antoine
    Moeller, F. Gerard
    BRAIN CONNECTIVITY, 2015, 5 (03) : 177 - 186
  • [8] Association between Motor Planning and the Frontoparietal Network in Children: An Exploratory Multimodal Study
    Bhoyroo, Ranila
    Hands, Beth
    Caeyenberghs, Karen
    de Luca, Alberto
    Leemans, Alexander
    Wigley, Adam
    Hyde, Christian
    JOURNAL OF THE INTERNATIONAL NEUROPSYCHOLOGICAL SOCIETY, 2022, 28 (09) : 926 - 936
  • [9] Investigating Semantic Relationship between the Scene and the Sound within the Scene by Dynamic Causal Modeling
    Wang, Xiaojing
    Xu, Junhai
    PROCEEDINGS OF THE 2016 2ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND INDUSTRIAL ENGINEERING (AIIE 2016), 2016, 133 : 334 - 337
  • [10] Valence, Arousal, and Gender Effect on Olfactory Cortical Network Connectivity: A Study Using Dynamic Causal Modeling for EEG
    Rho, Gianluca
    Callara, Alejandro Luis
    Cecchetto, Cinzia
    Vanello, Nicola
    Scilingo, Enzo Pasquale
    Greco, Alberto
    IEEE ACCESS, 2022, 10 : 127313 - 127327